精英家教网 > 高中数学 > 题目详情

【题目】已知数列是等差数列,其前项和为是等比数列,.

(1)求数列的通项公式;

(2)求数列的前10项和.

【答案】(1);(2).

【解析】分析:(1)设数列的公差为,由,解得从而可得;(2)得公比从而可得利用分组求和法,结合等差数列与等比数列的求和公式即可得结果.

详解(1)设数列{an}的公差为d,

a1=1,S5=5a1+10d=25,解得d=2,故an=2n-1,

(2)设数列{bn-an}的公比为q,

由b1-a1=2,b4-a4=16,得q3=8,解得q=2,

bn-an=2n ,故bn=2n+2n-1,

所以数列{bn }的前10项和为

T10=b1+b2+…b10=(2+1)+(22+3)+(23+5)+…+(210+19)

=(2+22+…+210)+(1+3+5+…+19)

=2146.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆、抛物线的焦点均在轴上, 的中心和的顶点均为原点,平面上四个点 中有两个点在椭圆上,另外两个点在抛物线上.

(1)求的标准方程;

(2)是否存在直线满足以下条件:①过的焦点;②与交于两点,且以为直径的圆经过原点.若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三棱柱的底面边长为2 是侧棱的中点.

1证明:平面平面

2若平面与平面所成锐角的大小为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别是 ,且点在椭圆上.

(1)求椭圆的标准方程;

(2)设椭圆的左顶点为,过点的直线与椭圆相交于异于的不同两点 ,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)从某校高一年级随机抽取名学生,获得了他们日平均睡眠时间(单位:小时)的数据,整理得到数据分组及频数分布表:

组号

分组

频数

频率

Ⅰ)求的值.

Ⅱ)若,补全表中数据,并绘制频率分布直方图.

Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,若上述数据的平均值为,求的值,并由此估计该校高一学生的日平均睡眠时间不少于小时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在游学活动中,在处参观的第组同学通知在处参观的第组同学:第组正离开处向的东南方向游玩,速度约为米/分钟.已知的南偏西方向且相距米,第组同学立即出发沿直线行进并用分钟与第组同学汇合.

)设第组同学行进的方位角为,求

(方位角:从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角)

)求第组同学的行进速度为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司计划投资两种金融产品,根据市场调查与预测,产品的利润与投资金额的函数关系为产品的利润与投资金额的函数关系为(注:利润与投资金额单位:万元).

(1)该公司现有100万元资金,并计划全部投入两种产品中,其中万元资金投入产品,试把两种产品利润总和表示为的函数,并写出定义域;

(2)怎样分配这100万元资金,才能使公司的利润总和获得最大?其最大利润总和为多少万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的定义域;

(2)判断函数的奇偶性,并予以证明。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入(单位:万元)满足,乙城市收益Q与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).

(1)当甲城市投资50万元时,求此时公司总收益;

(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?

查看答案和解析>>

同步练习册答案