精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)满足f(logax)=·(x)(其中a>0且a≠1).

(1)求函数f(x)的解析式,并判断其奇偶性和单调性;

(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围.

【答案】(1)见解析.(2)[2-,1)∪(1,2+].

【解析】 试题分析:(1)利用换元法求函数解析式,注意换元时元的范围,再根据奇偶性定义判断函数奇偶性,最后根据复合函数单调性性质判断函数单调性(2)不等式恒成立问题一般转化为对应函数最值问题:即f(x)最大值小于4,根据函数单调性确定函数最大值,自在解不等式可得a的取值范围.

试题解析:

(1)令logaxt(t∈R),则xat

f(t)= (atat).

f(x)= (axax)(x∈R).

f(-x)= (axax)=- (axax)=-f(x),∴f(x)为奇函数.

a>1时,yax为增函数,y=-ax为增函数,且>0,

f(x)为增函数.

当0<a<1时,yax为减函数,y=-ax为减函数,且<0,

f(x)为增函数.∴f(x)在R上为增函数.

(2)∵f(x)是R上的增函数,∴yf(x)-4也是R上的增函数.

x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数,

只需f(2)-4≤0,即 (a2a-2)≤4.

()≤4,∴a2+1≤4a,∴a2-4a+1≤0,

∴2-a≤2+.又a≠1,

a的取值范围为[2-1)∪(1,2]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经过原点的直线与椭圆交于两点,点为椭圆上不同于的一点,直线的斜率均存在,且直线的斜率之积为.

(1)求椭圆的离心率;

(2)设分别为椭圆的左、右焦点,斜率为的直线经过椭圆的右焦点,且与椭圆交于两点.若点在以为直径的圆内部,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,设:当时,不等式 恒成立;Q:当时,是单调函数。如果满足成立的的集合记为,满足Q成立的的集合记为,求A∩(CRB)(为全集).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由20名高二级学生和15名高一级学生组成,现采用分层抽样的方法抽取7人,组成一个体验小组去市场体验“共享单车”的使用.问:

(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;

(Ⅱ)已知该地区有, 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租型车,高一级学生都租型车.

(1)如果从组内随机抽取3人,求抽取的3人中至少有2人在市场体验过程中租型车的概率;

(2)已知该地区型车每小时的租金为1元, 型车每小时的租金为1.2元,设为从体验小组内随机抽取3人得到的每小时租金之和,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品的进价为每件元,售价为每件元,每个月可卖出件;如果每件商品在该售价的基础上每上涨元,则每个月少卖件(每件售价不能高于元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.

(1)求的函数的函数关系式并直接写出自变量的取值范围;

(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·雅安高一检测)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2),

(1)求g(x)的解析式及定义域;

(2)求函数g(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=5x+x-2,g(x)=log5x+x-2的零点分别为x1,x2,则x1+x2的值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域是.

(1)判断上的单调性,并证明;

(2)若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左顶点为.

(1)求椭圆的方程;

(2)已知为坐标原点, 是椭圆上的两点,连接的直线平行轴于点,证明: 成等比数列.

查看答案和解析>>

同步练习册答案