精英家教网 > 高中数学 > 题目详情

【题目】已知曲线

(1)求曲线在点处的切线方程;(2)过点作直线与曲线交于两点,求线段的中点的轨迹方程。

【答案】(1);(2)

【解析】

(1)y>0时,y,求导数,可得切线的斜率,从而可求曲线C在点处的切线方程;

(2)设lykx代入y2=2x﹣4,利用韦达定理,结合中点坐标公式,即可求出线段AB的中点M的轨迹方程.

(1)y>0时,y

y

x=4时,y

∴曲线C在点A(4,2)处的切线方程为yx﹣4),即

(2)设lykxMxy),则

ykx代入y2=2x﹣4,可得k2x2﹣2x+4=0,

∴△=4﹣16k2>0,∴

Ax1y1)、Bx2y2),则x1+x2

y1+y2

xy

y2xx>4).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知正方体ABCDA1B1C1D1的棱长为1,EF分别是棱ADB1C1上的动点,设AEλB1Fμ若平面BEF与正方体的截面是五边形,则λμ的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,一单位圆的圆心的初始位置在,此时圆上一点P的位置在,圆在x轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市收集并整理了该市20191月份至10月份各月最低气温与最高气温(单位:)的数据,绘制了下面的折线图.

已知该城市各月的最低气温与最高气温具有较好的线性关系,则根据折线图,下列结论正确的是

A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温

C.月温差(最高气温减最低气温)的最大值出现在1D.最低气温低于0 的月份有4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A的长度均大于200米,现在边界APAQ处建围墙,在PQ处围竹篱笆.

1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?

2)已知AP段围墙高1米,AQ段围墙高1.5米,造价均为每平方米100.若围围墙用了20000元,问如何围可使竹篱笆用料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C1(a>0b>0)与椭圆1的焦点重合,离心率互为倒数,设F1F2分别为双曲线C的左右焦点,P为右支上任意一点,则的最小值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像如图所示,关于有以下5个结论:

1;(2;(3)将图像上所有点向右平移个单位得到的图形所对应的函数是偶函数;(4)对于任意实数x都有;(5)对于任意实数x都有;其中所有正确结论的编号是(

A.(1)(2)(3)B.(1)(2)(4)(5)C.(1)(2)(4)D.(1)(3)(4)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”是手机推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:

运动达人

参与者

合计

男教师

60

20

80

女教师

40

20

60

合计

100

40

140

(Ⅰ)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?

(Ⅱ)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为,写出的分布列并求出数学期望.

参考公式:,其中.

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的偶函数,且满足,当时,,则函数在区间上零点的个数为(

A.9B.10C.18D.20

查看答案和解析>>

同步练习册答案