精英家教网 > 高中数学 > 题目详情
定义域为R的函数f(x)满足条件:
[f(x1)-f(x2)](x1-x2)>0,(x1x2R+x1x2)
②f(x)+f(-x)=0(x∈R); 
③f(-3)=0.
则不等式x•f(x)<0的解集是(  )
分析:由条件①可得函数f(x)为(0,+∞)上的增函数,由②可得函数为奇函数,再由③可得函数的图象过
点(-3,0)、(3,0),数形结合可得不等式的解集
解答:解:由条件①可得函数f(x)为(0,+∞)
上的增函数,
由②可得函数为奇函数,
再由③可得函数的图象过点(-3,0)、(3,0),
故由不等式x•f(x)<0可得,
当x>0时,f(x)<0;
当x<0时,f(x)>0.
结合函数f(x)的简图可得不等式的解集为 {x|0<x<3,或-3<x<0},
故选D.
点评:本题主要考查函数的奇偶性和单调性的应用,其它不等式的解法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
b-
2
x
 
2
x+1
 
+a
是奇函数
(1)a+b=
3
3

(2)若函数g(x)=f(
2x+1
)+f(k-x)
有两个零点,则k的取值范围是
(-1,-
1
2
(-1,-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+b2x+1+a
是奇函数.
(1)求f(x)的解析式;
(2)用定义证明f(x)为R上的减函数;
(3)若对任意的t∈[-1,1],不等式f(2k-4t)+f(3•2t-k-1)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+12x+1+a
是奇函数,则a=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)=
1
|x-2|
,(x≠2)
1,(x=2)
,若关于x的方程f2(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则x1+x2+x3+x4+x5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数.
(Ⅰ)求实数a值;
(Ⅱ)判断并证明该函数在定义域R上的单调性.

查看答案和解析>>

同步练习册答案