【题目】如图,直三棱柱ABCA1B1C1中(侧棱与底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1=,D 是A1B1的中点.
(1)求证:C1D⊥平面AA1B1B;
(2)当点F 在BB1上的什么位置时,AB1⊥平面C1DF ?并证明你的结论.
【答案】(1)见解析;(2)见解析
【解析】
(1)由是直三棱柱,D是A1B1的中点和题设条件,得C1D⊥A1B1和AA1⊥C1D,利用线面垂直的判定定理,即可证明;
(2)作交AB1于点E,延长DE交BB1于点F,连接C1F,则AB1⊥平面C1DF,点F即所求.
(1)∵是直三棱柱,
∴A1C1=B1C1=1,且∠A1C1B1=90°.
又D是A1B1的中点,
∴C1D⊥A1B1.
∵AA1⊥平面A1B1C1,C1D 平面A1B1C1,
∴AA1⊥C1D,
∴C1D⊥平面.
(2)作交AB1于点E,延长DE交BB1于点F,连接C1F,则AB1⊥平面C1DF,点F即所求.
事实上,∵C1D⊥平面AA1B1B,AB1平面AA1B1B,
∴C1D⊥AB1.
又AB1⊥DF,,
∴AB1⊥平面C1DF.
∵AA1=A1B1=,
∴四边形AA1B1B为正方形.
又D为A1B1的中点,DF⊥AB1,
∴F为BB1的中点,
∴当点F为BB1的中点时,AB1⊥平面C1DF.
科目:高中数学 来源: 题型:
【题目】圆周上有个点,用弦两两连结起来,其中任何3条弦都不在圆内共点.现将由此形成的互补重叠的圆内区域的个数记为.
(1).直接画图求出,,,,;
(2).确定的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为一个56元集合.求最小的正整数,使得对集合的任意15个子集,只要它们中间任何七个的并的元素个数均不少于,则这15个子集中一定存在三个集合,使得它们的交集非空.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人在微信群中发了一个8元“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领到的钱数不少于其他任何人的概率为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以平面直角坐标系的原点为极点, 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为,圆的极坐标方程为.
(1)求直线的普通方程与圆的直角坐标方程;
(2)设曲线与直线交于两点,若点的直角坐标为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学基本公式大赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.
(1)求x和y的值;
(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设整数,对置于个点及点处的卡片作如下操作:操作:若某个点处的卡片数不少于3,则可从中取出三张,在三点、、处各放一张;操作:若点处的卡片数不少于,则可从中取出张,在个点处各放一张。证明:只要放置于这个点处的卡片总数不少于,则总能通过若干次操作,使得每个点处的卡片数均不少于。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com