精英家教网 > 高中数学 > 题目详情

【题目】某工厂对一批新产品的长度(单位:)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )

A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75

【答案】C

【解析】

根据平均数的定义即可求出.根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.

:根据频率分布直方图,得平均数为512.5×0.02+17.5×0.04+22.5×0.08+27.5×0.03+32.5×0.03)=22.75

0.02×5+0.04×50.30.5

0.3+0.08×50.70.5

∴中位数应在2025内,

设中位数为x,则

0.3+x20)×0.080.5

解得x22.5

∴这批产品的中位数是22.5

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.

(1)求证:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切线PC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(1)求回归直线方程,其中.

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学40名数学教师,按年龄从小到大编号为1,2,…40。现从中任意选取6人分成两组分配到A,B两所学校从事支教工作,其中三名编号较小的教师在一组,三名编号较大的教师在另一组,那么编号为8,12,28的数学教师同时入选并被分配到同一所学校的方法种数是

A. 220 B. 440 C. 255 D. 510

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数,标准差,绘制如图所示的频率分布直方图,以频率值作为概率估值。

(1)从该生产线加工的产品中任意抽取一件,记其数据为,依据以下不等式评判(表示对应事件的概率)

评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;

(2)将数据不在内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为,求的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信红包是一款年轻人非常喜欢的手机应用.某网络运营商对甲、乙两个品牌各种型号的手机在相同环境下抢到红包的个数进行统计,得到如下数据:

品牌 型号

甲品牌(个)

4

3

8

6

12

乙品牌(个)

5

7

9

4

3

红包个数

手机品牌

优良

一般

合计

甲品牌(个)

乙品牌(个)

合计

(Ⅰ)如果抢到红包个数超过个的手机型号为“优良”,否则为“一般”,请完成上述表格,并据此判断是否有的把握认为抢到红包的个数与手机品牌有关?

(Ⅱ)不考虑其它因素,现要从甲、乙两品牌的种型号中各选出种型号的手机进行促销活动,求恰有一种型号是“优良”,另一种型号是“一般”的概率;

参考公式:随机变量的观察值计算公式:

其中.临界值表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标方程是ρ=asinθ,直线l的参数方程是 (t为参数)
(1)若a=2,直线l与x轴的交点是M,N是圆C上一动点,求|MN|的最大值;
(2)直线l被圆C截得的弦长等于圆C的半径的 倍,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当求函数的单调区间

(2)当若函数在区间上的最小值是的值

(3)设是函数图象上任意不同的两点线段的中点为直线的斜率为.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某届奥运会上,中国队以261826铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查结果只有“满意”和“不满意”两种,从被调查的学生中随机抽取了50人,具体的调查结果如表:

班号

一班

二班

三班

四班

五班

六班

频数

5

9

11

9

7

9

满意人数

4

7

8

5

6

6

(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;

(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为,求随机变量的分布列及数学期望

查看答案和解析>>

同步练习册答案