精英家教网 > 高中数学 > 题目详情

【题目】如图,F1F2是椭圆C1y2=1与双曲线C2的公共焦点,AB分别是C1C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是___

【答案】

【解析】

不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得xy的值,利用双曲线的定义及性质即可求得C2的离心率.

设|AF1|=x,|AF2|=y,∵点A为椭圆C1y2=1上的点,

∴2a=4,b=1,c

∴|AF1|+|AF2|=2a=4,即x+y=4;①

又四边形AF1BF2为矩形,

,即x2+y2=(2c212,②

由①②得:,解得x=2y=2,设双曲线C2的实轴长为2m,焦距为2n

则2m=|AF2|﹣|AF1|=yx=2,2n=2c=2

∴双曲线C2的离心率e

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中a

时,若处取得极小值,求a的值;

时.

若函数在区间上单调递增,求b的取值范围;

若存在实数,使得,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上

)求椭圆的方程

设动直线与椭圆有且仅有一个公共点,判断是否存在以原点为圆心的圆,满足此圆与相交于两点 (两点均不在坐标轴上),且使得直线的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知当x∈[0,1]时,函数y=(mx-1)2的图象与ym的图象有且只有一个交点,求正实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

判断在定义域上的单调性;

上的最小值为2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,过点的直线的参数方程为为参数).以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(01)且斜率为k的直线l与圆C(x2)2(y3)21交于MN两点.

(1)k的取值范围;

(2)12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求fx)的定义域;

2)当x∈(1+∞),

①求证:fx)在区间(1+∞)上是减函数;

②求使关系式f2+m)>f2m-1)成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为F,左顶点为A,已知,其中O为坐标原点,e为椭圆的离心率.

求椭圆C的方程;

是否存在斜率为的直线l,使得当直线l与椭圆C有两个不同交点MN时,能在直线上找到一点P,在椭圆C上找到一点Q,满足?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案