精英家教网 > 高中数学 > 题目详情

【题目】如图1,已知正方体的棱长为为棱的中点,分别是线段上的点,若三棱锥的俯视图如图2,则三棱锥的体积最大值为( )

A.B.C.D.

【答案】D

【解析】

通过俯视图可确定MQ为所在棱中点,由线面关系可确定当NC重合时,N到平面PQM的距离最大.由截面图形ACC1A1中的线线关系可知CE,再求出三角形PQM的面积,代入棱锥体积公式求解.

由俯视图知,MA1D1的中点,QA1B1的中点,NCC1上任意一点,

如图1所示:由中位线可知:PQAB1MPAD1,且

∴平面PMQ∥平面AB1D1,由正方体中线面关系可知:A1C⊥平面AB1D1,∴A1C⊥平面PMQ

∴当NC重合,点N到平面PMQ的距离最大,截面ACC1A1如图2所示,其中平面ACC1A1平面PMQPS

平面ACC1A1平面AB1D1AT,则,∴CE

A1C,∴最大值为CEA1C

,∴三棱锥PMNQ的体积最大值为

故选:D

1 2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

≥5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:

出险次数

0

1

2

3

4

≥5

频数

60

50

30

30

20

10

(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;

(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;

(3)求续保人本年度平均保费的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,BC边上的高所在直线的方程为x2y10A的平分线所在的直线方程为y0.若点B的坐标为(1,2),求点A和点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样的方法从该地区调查了500位老年人,结果如下:

性别

是否需要志愿者

需要

40

30

不需要

160

270

附:的观测值

0.05

0.01

0.001

3.841

6.635

10.828

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了勾股圆方图,亦称赵爽弦图(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成).类比赵爽弦图,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( .

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,且经过点.

(1)求椭圆的方程;

(2)过点作直线与椭圆交于不同的两点,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)若曲线在点处的切线方程为,求函数的解析式;

2)讨论函数的单调性;

3)若对于任意的,不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对年利率为的连续复利,要在年后达到本利和,则现在投资值为是自然对数的底数.如果项目的投资年利率为的连续复利.

(1)现在投资5万元,写出满年的本利和,并求满10年的本利和;(精确到0.1万元)

(2)一个家庭为刚出生的孩子设立创业基金,若每年初一次性给项目投资2万元,那么,至少满多少年基金共有本利和超过一百万元?(精确到1年)

查看答案和解析>>

同步练习册答案