精英家教网 > 高中数学 > 题目详情
已知函数f(t)=
1-t
1+t
,g(x)=cosx•f(sinx)+sinx•f(cosx),x∈(π,
17π
12
).

(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π))的形式;
(Ⅱ)求函数g(x)的值域.
(Ⅰ)g(x)=cosx•
1-sinx
1+sinx
+sinx•
1-cosx
1+cosx

=cosx•
(1-sinx)2
cos2x
+sinx•
(1-cosx)2
sin2x

x∈(π,
17π
12
],∴|cosx|=-cosx,|sinx|=-sinx

g(x)=cosx•
1-sinx
-cosx
+sinx•
1-cosx
-sinx

=sinx+cosx-2
=
2
sin(x+
π
4
)-2.

(Ⅱ)由π<x≤
17π
12
,得
4
<x+
π
4
3
.

∵sint在(
4
2
]
上为减函数,在(
2
3
]
上为增函数,
sin
3
<sin
4
,∴sin
2
≤sin(x+
π
4
)<sin
4
(当x∈(π,
17π
2
]
),
-1≤sin(x+
π
4
)<-
2
2
,∴-
2
-2≤
2
sin(x+
π
4
)-2<-3

故g(x)的值域为[-
2
-2,-3).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(t)=
1-t
1+t
,g(x)=cosx•f(sinx)+sinx•f(cosx),x∈(π,
17π
12
).

(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π))的形式;
(Ⅱ)求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)若函数在区间(t,t+
1
2
)
(其中t>0)上存在极值,求实数t的取值范围;
(2)如果当x≥1时,不等式f(x)≥
a
x+1
恒成立,求实数a的取值范围,并且判断代数式[(n+1)!]2与(n+1)•en-2(n∈N*)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)已知函数f(x)=
1-x2
1+x+x2
(x∈R)

(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若(et+2)x2+etx+et-2≥0对满足|x|≤1的任意实数x恒成立,求实数t的取值范围(这里e是自然对数的底数);
(Ⅲ)求证:对任意正数a、b、λ、μ,恒有f[(
λa+μb
λ+μ
)
2
]-f(
λa2b2
λ+μ
)≥(
λa+μb
λ+μ
)2
-
λa2b2
λ+μ

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.如果对于函数f(x)的所有上界中有一个最小的上界,就称其为函数f(x)的上确界.已知函数f(x)=1+a•(
1
2
)x+(
1
4
)x
g(x)=
1-m•2x
1+m•2x

(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(3)若m>0,求函数g(x)在[0,1]上的上确界T(m).

查看答案和解析>>

同步练习册答案