精英家教网 > 高中数学 > 题目详情

05年全国卷Ⅰ)(12分)

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点。

(Ⅰ)证明:面PAD⊥面PCD;

(Ⅱ)求AC与PB所成的角;

(Ⅲ)求面AMC与面BMC所成二面角的大小。

 

解析:(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,

∴由三垂线定理得:CD⊥PD.

因而,CD与面PAD内两条相交直线AD,PD都垂直,

∴CD⊥面PAD.

又CD面PCD,∴面PAD⊥面PCD.

(Ⅱ)解:过点B作BE//CA,且BE=CA,

则∠PBE是AC与PB所成的角.

连结AE,可知AC=CB=BE=AE=,又AB=2,

所以四边形ACBE为正方形.  由PA⊥面ABCD得∠PEB=90°

在Rt△PEB中BE=,PB=,    

(Ⅲ)解:作AN⊥CM,垂足为N,连结BN.

在Rt△PAB中,AM=MB,又AC=CB,

∴△AMC≌△BMC,

∴BN⊥CM,故∠ANB为所求二面角的平面角.

∵CB⊥AC,由三垂线定理,得CB⊥PC,

在Rt△PCB中,CM=MB,所以CM=AM.

在等腰三角形AMC中,AN?MC=

.    ∴AB=2,

故所求的二面角为

方法二:因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,

 
 

 

 

 

 

 


则各点坐标为

A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(0,1,.

(Ⅰ)证明:因

又由题设知AD⊥DC,且AP与与AD是平面PAD内的两条相交直线,由此得DC⊥面PAD.

又DC在面PCD上,故面PAD⊥面PCD.

(Ⅱ)解:因

由此得AC与PB所成的角为

(Ⅲ)解:在MC上取一点N(xyz),则存在使

要使

为所求二面角的平面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(05年全国卷Ⅲ理)(14分)

已知函数

(Ⅰ)求的单调区间和值域;

(Ⅱ)设,函数,若对于任意,总存在,使得成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

05年全国卷Ⅰ文)(12分)

已知二次函数的二次项系数为,且不等式的解集为

(Ⅰ)若方程有两个相等的根,求的解析式;

(Ⅱ)若的最大值为正数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

(05年全国卷Ⅲ理)已知复数:,复数满足,则复数        

 

查看答案和解析>>

科目:高中数学 来源: 题型:

05年全国卷Ⅰ理)已知双曲线的一条准线与抛物线的准线重合,则该双曲线的离心率为(    )

(A)                          (B)                             (C)                   (D)

 

查看答案和解析>>

科目:高中数学 来源: 题型:

05年全国卷Ⅰ理)已知直线过点,当直线与圆有两个交点时,其斜率k的取值范围是(  )

(A)                                     (B)             

(C)                                        (D)

 

查看答案和解析>>

同步练习册答案