精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)证明:当时,有最小值,无最大值;

2)若在区间上方程恰有一个实数根,求的取值范围.

【答案】1)证明见解析;(2).

【解析】

1)当,求,进而求出单调区间,极小值,即可证明结论;

2)分离参数转化为,令,求只有一个交点时,的范围,通过求导求出单调区间,作出图象,数形结合即可求解.

1)当时,

恒成立,

单调递增,

所以存在的,使得

单调递减,在单调递增,

时,取得极小值,也是最小值,

时,

所以有最小值,无最大值;

(2)方程恰有一实根,

恰有一实根,

恰有一个公共点,

时,

时,

上单调递增,在上单调递减,

上单调递增,即极大值为

极小值为

做出上的图象,如下图所示,

恰有一个公共点,

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动圆与轴相切于点,过点分别作动圆异于轴的两切线,设两切线相交于,点的轨迹为曲线.

1)求曲线的轨迹方程;

2)过的直线与曲线相交于不同两点,若曲线上存在点,使得成立,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(Ⅰ)若曲线在点处的切线方程为,其中是自然对数的底数,求的值:

(Ⅱ)若函数内的减函数,求正数的取值范围;

(Ⅲ)若方程无实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在处的切线方程为.

1)讨论函数的单调性.

2)是否存在正实数,使得函数的定义域为时,值域也为?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆规是画椭圆的一种工具,如图1所示,在十字形滑槽上各有一个活动滑标,有一根旋杆将两个滑标连成一体,为旋杆上的一点,且在两点之间,且,当滑标在滑槽内作往复运动,滑标在滑槽内随之运动时,将笔尖放置于处可画出椭圆,记该椭圆为.如图2所示,设交于点,以所在的直线为轴,以所在的直线为轴,建立平面直角坐标系.

1)求椭圆的方程;

2)设是椭圆的左右顶点,点为直线上的动点,直线分别交椭圆于两点,求四边形面积为,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,准线为为抛物线过焦点的弦,已知以为直径的圆与相切于点.

1)求的值及圆的方程;

2)设上任意一点,过点的切线,切点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面.

(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;

(2)当直线与平面所成的角为45°时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为满足人们的阅读需求,图书馆设立了无人值守的自助阅读区,提倡人们在阅读后将图书分类放回相应区域.现随机抽取了某阅读区500本图书的分类归还情况,数据统计如下(单位:本).

文学类专栏

科普类专栏

其他类专栏

文学类图书

100

40

10

科普类图书

30

200

30

其他图书

20

10

60

1)根据统计数据估计文学类图书分类正确的概率;

2)根据统计数据估计图书分类错误的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某公司生产线生产的某种产品中抽取1000件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:

(1)求这1000件产品质量指标的样本平均数和样本方差 (同一组中的数据用该组区间的中点值作代表);

(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.

(i)利用该正态分布,求

(ⅱ)已知每件该产品的生产成本为10元,每件合格品(质量指标值)的定价为16元;若为次品(质量指标值),除了全额退款外且每件次品还须赔付客户48元.若该公司卖出10件这种产品,记表示这件产品的利润,求.

附:,若,则.

查看答案和解析>>

同步练习册答案