【题目】某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保费 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.
【答案】解:(Ⅰ)∵某保险的基本保费为a(单位:元),
上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,
∴由该险种一续保人一年内出险次数与相应概率统计表得:
一续保人本年度的保费高于基本保费的概率:
p1=1﹣0.30﹣0.15=0.55.
(Ⅱ)设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,
由题意P(A)=0.55,P(AB)=0.10+0.05=0.15,
由题意得若一续保人本年度的保费高于基本保费,
则其保费比基本保费高出60%的概率:
p2=P(B|A)= = = .
(Ⅲ)由题意,续保人本年度的平均保费与基本保费的比值为:
=1.23,
∴续保人本年度的平均保费与基本保费的比值为1.23
【解析】(Ⅰ)上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,由此利用该险种一续保人一年内出险次数与相应概率统计表根据对立事件概率计算公式能求出一续保人本年度的保费高于基本保费的概率.(Ⅱ)设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意求出P(A),P(AB),由此利用条件概率能求出若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率.(Ⅲ)由题意,能求出续保人本年度的平均保费与基本保费的比值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣1﹣ ,a∈R.
(1)若函数g(x)=(x﹣1)f(x)在(0,1)上有且只有一个极值点,求a的范围;
(2)当a≤﹣1时,证明:f(x)lnx>0对于任意x∈(0,1)∪(1,+∞)成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.
(Ⅰ)证明:B,C,G,F四点共圆;
(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)= +ln( +x)+ cos xdx在区间[﹣k,k](k>0)上的值域为[m,n],则m+n的值是( )
A.0
B.2
C.4
D.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的直三棱柱ABC﹣A1B1C1中,面AA1B1B和面AA1C1C都是边长为1的正方形且互相垂直,D为AA1的中点,E为BC1的中点.
(Ⅰ)证明:DE∥平面A1B1C1;
(Ⅱ)求平面C1BD和平面CBD所成的角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x+1)lnx,g(x)=a(x﹣1)(a∈R).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)≥g(x)对任意的x∈[1,+∞)恒成立,求实数a的取值范围;
(Ⅲ)求证:ln2ln3…lnn> (n≥2,n∈N+).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com