精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)= ﹣x,若不等式f(x)≤0在[﹣2,+∞)上有解,则实数a的最小值为(
A.
B.
C.
D.

【答案】C
【解析】解:f(x)= ﹣x≤0在[﹣2,+∞)上有解 2aex ﹣x在[﹣2,+∞)上有解
2a≥[ ]min(x≥﹣2).
令g(x)= =
则g′(x)=3x2+3x﹣6﹣ =(x﹣1)(3x+6+ ),
∵x∈[﹣2,+∞),
∴当x∈[﹣2,1)时,g′(x)<0,g(x)在区间[﹣2,1)上单调递减;
当x∈(1,+∞)时g′(x)>0,g(x)在区间(1,+∞)上单调递增;
∴当x=1时,g(x)取得极小值g(1)=1+ ﹣6+2﹣ =﹣ ,也是最小值,
∴2a≥﹣
∴a≥
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B﹣cos2C﹣sin2A=sinAsinB.
(1)求角C;
(2)若c=2 ,△ABC的中线CD=2,求△ABC面积S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:

不关注

关注

总计

男生

30

15

45

女生

45

10

55

总计

75

25

100

根据表中数据,通过计算统计量K2= ,并参考一下临界数据:

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

若由此认为“学生对2018年俄罗斯年世界杯的关注与性别有关”,则此结论出错的概率不超过(
A.0.10
B.0.05
C.0.025
D.0.01

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,并且b=2
(1)若角A,B,C成等差数列,求△ABC外接圆的半径;
(2)若三边a,b,c成等差数列,求△ABC内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)<0且f(﹣1)=0则不等式f(x)g(x)<0的解集为(
A.(﹣1,0)∪(1,+∞)
B.(﹣1,0)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣2ax(其中a∈R).
(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;
(Ⅱ)若f(x)≤1恒成立,求a的取值范围;
(Ⅲ)设g(x)=f(x)+ x2 , 且函数g(x)有极大值点x0 , 求证:x0f(x0)+1+ax02>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程|x2﹣2x﹣1|﹣t=0有四个不同的实数根x1、x2、x3、x4,且x1<x2<x3<x4 , 则2(x4﹣x1)+(x3﹣x2)的取值范围是(
A.(8,6
B.(6 ,4
C.[8,4 ]
D.(8,4 ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是R上的偶函数,且当x≤0时,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函数y=f(x)的表达式,并直接写出其单调区间(不需要证明);
(3)若f(lga)+2<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线x2 =1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x﹣4)2+y2=1作切线,切点分别为M,N,则|PM|2﹣|PN|2的最小值为(
A.10
B.13
C.16
D.19

查看答案和解析>>

同步练习册答案