分析 先求出向上的数之积为奇数的概率,根据对立事件的性质能求出向上的数之积为偶数的概率.
解答 解:每掷1个骰子都有6种情况,所以同时掷两个骰子总的结果数为6×6=36.
向上的数之积为偶数的情况比较多,可以先考虑其对立事件,即向上的数之积为奇数.
向上的数之积为奇数的基本事件有:
(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9个,
故向上的数之积为奇数的概率为P(B)=$\frac{9}{36}=\frac{1}{4}$.
根据对立事件的性质知,向上的数之积为偶数的概率为P(C)=1-P(B)=1-$\frac{1}{4}=\frac{3}{4}$.
故答案为:$\frac{3}{4}$.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法和对立事件概率计算公式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\sqrt{3}$或$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [0,+∞) | B. | (-2,-1] | C. | (-2,0] | D. | (-∞,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | -$\frac{16}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [kπ+$\frac{π}{8}$,kπ+$\frac{5}{8}$π](k∈Z) | B. | [-$\frac{3}{8}$π+kπ,$\frac{π}{8}$+kπ](k∈Z) | ||
C. | [$\frac{π}{8}$+2kπ,$\frac{5π}{8}$+2kπ](k∈Z) | D. | [-$\frac{3}{8}$π+2kπ,$\frac{π}{8}$+2kπ](k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-16,0] | B. | [0,16] | C. | [-4,20] | D. | [-20,4] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com