精英家教网 > 高中数学 > 题目详情

【题目】某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了50名市民,得到数据如下表:

喜欢

不喜欢

合计

大于40岁

20

5

25

20岁至40岁

10

15

25

合计

30

20

50

(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?保留小数点后3位)

(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取3人作进一步调查,将这3位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

【答案】(1)有把握(2)

【解析】

(1)计算的值,与临界值比较,即可得出结论;

(2)确定样本中有4个“大于40岁”的市民,2个“20岁到40岁”的市民,利用列举法确定基本事件,即可求得结论.

解:(1)由已知得 7.879

有99.5%的把握认为喜欢“人文景观”景点与年龄有关.

(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取3人中“大于40岁”的市民2人设为,1位“20岁至40岁”的市民设为,抽取2人基本事件共有三个,恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民包括基本事件2个,概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高科技公司研究开发了一种新产品,生产这种新产品的每天固定成本为元,每生产件,需另投入成本为元,每件产品售价为元(该新产品在市场上供不应求可全部卖完).

(1)写出每天利润关于每天产量的函数解析式;

(2)当每天产量为多少件时,该公司在这一新产品的生产中每天所获利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列各式的符号:

sin 145°cos(210°);②sincostan 5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求此函数对应的曲线在处的切线方程.

)求函数的单调区间.

)对,不等式恒成立,求的取值范围.

【答案】;)见解析;)当时, ,当

【解析】试题分析:(1利用导数的意义,求得切线方程为;(2求导得通过 分类讨论得到单调区间;(3分离参数法,得到,通过求导,得

试题解析:

)当时,

∴切线方程

,则

时, 上为增函数.

上为减函数,

时, 上为增函数,

时, 上为单调递增,

上单调递减.

)当时,

时,由

,对恒成立.

,则

极小

点睛:本题考查导数在函数综合题型中的应用。含参的函数单调性讨论,考查学生的分类讨论能力,本题中,结合导函数的形式,分类讨论;含参的恒成立问题,一般采取分离参数法,解决恒成立。

型】解答
束】
20

【题目】已知集合,集合且满足:

恰有一个成立.对于定义

)若 ,求的值及的最大值.

)取 中任意删去两个数,即剩下的个数的和为,求证:

)对于满足的每一个集合,集合中是否都存在三个不同的元素 ,使得恒成立,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,线段上有两个动点,且,现有如下四个结论:

平面

三棱锥的体积为定值;异面直线所成的角为定值,

其中正确结论的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)证明函数为奇函数;

(2)判断函数的单调性(无需证明),并求函数的值域;

(3)是否存在实数,使得的最大值为?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l1ax3y60l22x(a1)y60与圆Cx2y22xb21(b>0)的位置关系是“平行相交”,则实数b的取值范围为 (   )

A. ( ) B. (0 )

C. (0 ) D. ( )(,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角所对的边分别是,不等式对一切实数恒成立.

1)求的取值范围;

2)当取最大值,且的周长为时,求面积的最大值,并指出面积取最大值时的形状.(参考知识:已知

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有五张卡片,其中红色卡片三张,标号分别为123;蓝色卡片两张,标号分别为12.

(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;

(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.

查看答案和解析>>

同步练习册答案