【题目】如图,在四棱锥E﹣ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,
(1)求证:AE∥平面BDF;
(2)求证:平面BDF⊥平面ACE;
(3)2AE=EB,在线段AE上找一点P,使得二面角P﹣DB﹣F的余弦值为,求P的位置.
【答案】(1)见解析(2)见解析(3)P在E处.
【解析】
(1)通过证明FG∥AE即可证明;
(2)通过证明BF⊥平面ACE,即可证得面面垂直;
(3)建立空间直角坐标系,利用两个半平面法向量关系求解.
证明:(1)设AC∩BD=G,连接FG,易知G是AC的中点,
∵F是EC中点.
∴在△ACE中,FG∥AE,
∵AE平面BFD,FG平面BFD,
∴AE∥平面BFD.
(2)∵平面ABCD⊥平面ABE,BC⊥AB,
平面ABCD∩平面ABE=AB,
∴BC⊥平面ABE,又∵AE平面ABE,
∴BC⊥AE,
又∵AE⊥BE,BC∩BE=B,
∴AE⊥平面BCE,即AE⊥BF,
在△BCE中,BE=CB,F为CE的中点,
∴BF⊥CE,AE∩CE=E,
∴BF⊥平面ACE,
又BF平面BDF,
∴平面BDF⊥平面ACE.
(3)如图建立坐标系,设AE=1,
则B(2,0,0),D(0,1,2),C(2,0,2),F(1,0,1),
设P(0,a,0),,,
设平面BDF的法向量为,且,
则由⊥得﹣2x1+y1+2z1=0,
由⊥得﹣x1+z1=0,
令z1=1得x1=1,y1=0,从而
设平面BDP的法向量为,且,则
由⊥得﹣2x2+y2+2z2=0,
由⊥得2x2﹣ay2=0,
令y2=2得x2=a,z2=a﹣1,从而,
,
解得a=0或a=1(舍)
即P在E处.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).M是曲线上的动点,将线段OM绕O点顺时针旋转得到线段ON,设点N的轨迹为曲线.以坐标原点O为极点,轴正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)在(1)的条件下,若射线与曲线分别交于A, B两点(除极点外),且有定点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,直线与曲线y=f(x)和y=g(x)分别交于M,N两点,设曲线y=f(x)在点M处的切线为,在点N处的切线为
(1)当b=1时,若,求a的值
(2)若,求实数a的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F是抛物线C:y2=2px(p>0)的焦点,若点P(x0,4)在抛物线C上,且.
(1)求抛物线C的方程;
(2)动直线l:x=my+1(mR)与抛物线C相交于A,B两点,问:在x轴上是否存在定点D(t,0)(其中t≠0),使得kAD+kBD=0,(kAD,kBD分别为直线AD,BD的斜率)若存在,求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出如下四个命题:①若“且”为假命题,则均为假命题;②命题“若,则”的否命题为“若,则”; ③“,则”的否定是“,则”;④在中,“”是“”的充要条件.其中正确的命题的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:a1=1,且当n2时,
(1)若=1,证明数列{a2n1}是等差数列;
(2)若=2.①设,求数列{bn}的通项公式;②设,证明:对于任意的p,m N *,当p m,都有 Cm.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:1(a>b>0),A(﹣a,0),B(0,﹣b),P为C上位于第一象限的动点,PA交y轴于点E,PB交x轴于点F.
(1)探究四边形AEFB的面积是否为定值,说明理由;
(2)当△PEF的面积达到最大值时,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com