【题目】已知,若过轴上的一点可以作一直线与相交于,两点,且满足,则的取值范围为_______.
科目:高中数学 来源: 题型:
【题目】如图所示,直角梯形公园中,,,,公园的左下角阴影部分为以为圆心,半径为的圆面的人工湖,现设计修建一条与圆相切的观光道路(点分别在与上),为切点,设.
(1)试求观光道路长度的最大值;
(2)公园计划在道路的右侧种植草坪,试求草坪的面积最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面四边形MNPQ中,MN=,MP=1,MP⊥MN,PQ⊥QM.
(Ⅰ)若PQ=,求NQ的值;
(Ⅱ)若∠MQN=30°,求sin∠QMP的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对,点落在如图所示的两条线段上.该股票在30天内(包括30天)的日交易量M(万股)与时间t(天)的部分数据如下表所示:
第t天 | 6 | 13 | 20 | 27 |
M(万股) | 34 | 27 | 20 | 13 |
(1)根据提供的图象,写出该股票每股交易价格P(元)与时间t(天)所满足的函数关系式______;
(2)根据表中数据,写出日交易量M(万股)与时间t(天)的一次函数关系式:______;
(3)用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
总计 | 105 |
已知在全部105人中随机抽取1人为优秀的概率为.
(1)请完成上面的列联表;(把列联表自己画到答题卡上)
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”?
参考公式:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某轮船公司的一艘轮船每小时花费的燃料费与轮船航行速度的平方成正比,比例系数为轮船的最大速度为15海里小时当船速为10海里小时,它的燃料费是每小时96元,其余航行运作费用(不论速度如何)总计是每小时150元假定运行过程中轮船以速度v匀速航行.
求k的值;
求该轮船航行100海里的总费用燃料费航行运作费用的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,、分别为椭圆的焦点,椭圆的右准线与轴交于点,若,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)过、作互相垂直的两直线分别与椭圆交于、、、四点,求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=.
(1)求直线CD的方程;
(2)求圆P的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.
(1)求直方图中的值;
(2)求辆纯电动汽车续驶里程的中位数;
(3)若从续驶里程在的车辆中随机抽取辆车,求其中恰有一辆车的续驶里程为的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com