精英家教网 > 高中数学 > 题目详情

已知,求证:

答案:略
解析:

,而,且,∴


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

[理]已知函数f(x)=ax-
b
x
-2lnx,f(1)=0.
(1)若函数f(x)在其定义域内为单调函数,求a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′(
1
an-n+1
)-n2+1,已知a1=4,求证:an≥2n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD,求证:平面AB1D1∥平面C1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5(不等式选讲)
(Ⅰ)求函数y=3
x-5
+4
6-x
的最大值;
(Ⅱ)已知a≠b,求证:a4+6a2b2+b4>4ab(a2+b2

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)请考生在A、B、C三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.
A.选修4-1(几何证明选讲)已知AD为圆O的直径,直线BA与圆O相切与点A,直线OB与弦AC垂直并相交于点G,与弧AC相交于M,连接DC,AB=10,AC=12.
(Ⅰ)求证:BA•DC=GC•AD;(Ⅱ)求BM.
B.选修4-4(坐标系与参数方程)求直线
x=1+4t
y=-1-3t
(t为参数)被曲线ρ=
2
cos(θ+
π
4
)
所截的弦长.
C.选修4-5(不等式选讲)(Ⅰ)求函数y=3
x-5
+4
6-x
的最大值;
(Ⅱ)已知a≠b,求证:a4+6a2b2+b4>4ab(a2+b2).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•临沂一模)已知函数f(x)=1-
a
x+1
-ln(x+1)
,(a为常实数).
(1)若函数f(x)在区间(-1,1)内无极值,求实数a的取值范围;
(2)已知n∈N*,求证:ln(n+1)>n-2(
1
2
+
2
3
+…+
n
n+1
)

查看答案和解析>>

同步练习册答案