精英家教网 > 高中数学 > 题目详情

【题目】已知直线l: (t为参数),曲线C1 (θ为参数). (Ⅰ)设l与C1相交于A,B两点,求|AB|;
(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的 倍,纵坐标压缩为原来的 倍,得到曲线C2 , 设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.

【答案】解:(I)l的普通方程为y= (x﹣1),C1的普通方程为x2+y2=1,

联立方程组 ,解得交点坐标为A(1,0),B( ,﹣

所以|AB|= =1;

(II)曲线C2 (θ为参数).

设所求的点为P( cosθ, sinθ),

则P到直线l的距离d= = [ sin( )+2]

当sin( )=﹣1时,d取得最小值


【解析】(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.

(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.

【考点精析】解答此题的关键在于理解直线的参数方程的相关知识,掌握经过点,倾斜角为的直线的参数方程可表示为为参数),以及对圆的参数方程的理解,了解圆的参数方程可表示为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(ωx+φ)(其中|φ|< )的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=e2x , g(x)=kx+1(k∈R). (Ⅰ)若直线y=g(x)和函数y=f(x)的图象相切,求k的值;
(Ⅱ)当k>0时,若存在正实数m,使对任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a2+a7=﹣23,a3+a8=﹣29
(1)求数列{an}的通项公式;
(2)设数列{an+bn}是首项为1,公比为2的等比数列,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(  )

①原命题为真,它的否命题为假;

②原命题为真,它的逆命题不一定为真;

③一个命题的逆命题为真,它的否命题一定为真;

④一个命题的逆否命题为真,它的否命题一定为真.

A. ①② B. ②③

C. ③④ D. ②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,斜三棱柱ABC﹣A1B1C1中,侧面AA1B1B为菱形,底面△ABC是等腰直角三角形,∠BAC=90°,A1B⊥B1C.
(1)求证:直线AC⊥直线BB1
(2)若直线BB1与底面ABC成的角为60°,求二面角A﹣BB1﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的方程是y=8,圆C的参数方程是 (φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求直线l和圆C的极坐标方程;
(Ⅱ)射线OM:θ=α(其中 )与圆C交于O、P两点,与直线l交于点M,射线ON: 与圆C交于O、Q两点,与直线l交于点N,求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,MN与x轴相交于点R,若∠NRF=60°,则|FR|等于(
A.
B.1
C.2
D.4

查看答案和解析>>

同步练习册答案