【题目】已知抛物线()的焦点为,以抛物线上一动点为圆心的圆经过点F.若圆的面积最小值为.
(Ⅰ)求的值;
(Ⅱ)当点的横坐标为1且位于第一象限时,过作抛物线的两条弦,且满足.若直线AB恰好与圆相切,求直线AB的方程.
【答案】(1);(2).
【解析】分析:(Ⅰ)由抛物线的性质知,当圆心位于抛物线的顶点时,圆的面积最小,由可得的值;(Ⅱ)依横坐标相等可得,轴,,设(),则直线的方程为,代入抛物线的方程得,利用韦达定理求出的坐标,同理求出的坐标,求出的斜率为定值,设直线的方程为,由圆心到直线的距离等于半径,列方程解得,从而可得直线的方程.
详解:(Ⅰ)由抛物线的性质知,当圆心位于抛物线的顶点时,圆的面积最小,
此时圆的半径为,∴,解得.
(Ⅱ)依题意得,点的坐标为(1,2),圆的半径为2.
由(1,0)知,轴.
由知,弦,所在直线的倾斜角互补,∴.
设(),则直线的方程为,∴,
代入抛物线的方程得,,∴,
∴.
将换成,得,
∴.
设直线的方程为,即.
由直线与圆相切得,,解得.
经检验不符合要求,故舍去.
∴所求直线的方程为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,点为椭圆上的动点,若的最大值和最小值分别为和.
(I)求椭圆的方程
(Ⅱ)设不过原点的直线与椭圆 交于两点,若直线的斜率依次成等比数列,求面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于( )(参考公式:)
A. 2B. C. 4D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,其中且,为自然对数的底数.
(1)求函数的单调区间和极值;
(2)是否存在,对任意的,任意的,都有?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的上、下焦点分别为,上焦点到直线的距离为3,椭圆的离心率.
(1)求椭圆的方程;
(2)椭圆,设过点斜率存在且不为0的直线交椭圆于两点,试问轴上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知顶点是坐标原点的抛物线的焦点在轴正半轴上,圆心在直线上的圆与轴相切,且关于点对称.
(1)求和的标准方程;
(2)过点的直线与交于,与交于,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com