【题目】已知函数f(x)满足f(﹣x)=f(x),且f(x+2)=f(x)+f(2),当x∈[0,1]时,f(x)=x,那么在区间[﹣1,3]内,关于x的方程f(x)=kx+k+1(k∈R)且k≠﹣1恰有4个不同的根,则k的取值范围是
【答案】(- , 0)
【解析】解:∵当x∈[0,1]时,f(x)=x,∴f(0)=0,
∵f(﹣x)=f(x),且f(x+2)=f(x)+f(2),
∴函数y=f(x)为偶函数,
令x=﹣2,则f(﹣2+2)=f(﹣2)+f(2)=f(0)=0,
即2f(2)=0,则f(2)=0,
即f(x+2)=f(x)+f(2)=f(x),
即函数f(x)是周期为2的周期数列,
若x∈[﹣1,0],则﹣x∈[0,1]时,
此时f(﹣x)=﹣x=f(x),
∴f(x)=﹣x,x∈[﹣1,0],
令y=kx+k+1,则化为y=k(x+1)+1,即直线y=k(x+1)+1恒过M(﹣1,1).
作出f(x),x∈[﹣1,3]的图象与直线y=k(x+1)+1,
如图所示,由图象可知当直线介于直线MA与MB之间时,
关于x的方程f(x)=kx+k+1恰有4个不同的根,
又∵kMA=0,kMB=- ,
∴-<k<0.
所以答案是:(- , 0).
科目:高中数学 来源: 题型:
【题目】面对拥堵难题,济南治堵不舍昼夜.轨道交通1号线已于2019年元旦通车试运行,比原定工期提前8个月,其他各条地铁线路的建设也正在如火如荼的进行中,完工投入运行后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔为(单位:分钟),并且.经市场调研测算,地铁载客量与发车时间间隔相关,当时,地铁为满载状态,载客量为450人;当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为2分钟时的载客量为258人,记地铁载客量为(单位:人).
(1)求的表达式,并求当发车时间间隔为5分钟时,地铁的载客量;
(2)若该线路每分钟的利润为(单位:元),问当发车时间间隔为多少时,该线路每分钟的利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了检查一条流水线的生产情况,从该流水线上随机抽取40件产品,测量这些产品的重量(单位:克),整理后得到如下的频率分布直方图(其中重量的分组区间分别为(490,495],(495,500],(500,505],(505,510],(510,515]) (I)若从这40件产品中任取两件,设X为重量超过505克的产品数量,求随机变量X的分布列;
(Ⅱ)若将该样本分布近似看作总体分布,现从该流水线上任取5件产品,求恰有两件产品的重量超过505克的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了确定工效,进行了5次试验,收集数据如下:
加工零件个数(个) | 10 | 20 | 30 | 40 | 50 |
加工时间(分钟) | 64 | 69 | 75 | 82 | 90 |
经检验,这组样本数据的两个变量与具有线性相关关系,那么对于加工零件的个数与加工时间这两个变量,下列判断正确的是( )
A. 负相关,其回归直线经过点 B. 正相关,其回归直线经过点
C. 负相关,其回归直线经过点 D. 正相关,其回归直线经过点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.
(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;
(2)企业乙只依靠该店,最早可望在几年后脱贫?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com