精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是菱形,是边的中点.平面平面.线段上的点满足.

1)证明:

2)求直线与平面所成角的正弦值.

【答案】1)见解析 2

【解析】

1)连接,连接,根据相似三角形和比例关系,证得,再利用线面平行的判定定理,即可证得平面

2)以为坐标原点,分别为轴建立空间直角坐标系,得到向量和平面的法向量,利用向量的夹角公式,即可求解.

1)证明:连接,连接

因为是菱形,且的中点,所以,且

又由已知,于是,所以

平面平面,所以平面.

2)作的中点,连接,则,知在平面.

又由题知,,于是

因为平面平面,平面平面平面

所以平面,故

在菱形中,,所以

为坐标原点,分别为轴建立空间直角坐标系,不妨设

因为

所以为正三角形,

于是

所以.

,且,可得,故

平面

所以是平面的一个法向量,

故直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的各条棱长均相等, 的中点, 分别是线段和线段上的动点(含端点),且满足.当运动时,下列结论中不正确的是( )

A. 平面平面 B. 三棱锥的体积为定值

C. 可能为直角三角形 D. 平面与平面所成的锐二面角范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数

1)当时,求函数的单调区间;

2)若函数在区间上有唯一零点,试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)|2x4||x3|.

(1)解关于x的不等式f(x)<8

(2)对于正实数ab,函数g(x)f(x)3a4b只有一个零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于两点,点是线段的中点,直线轴交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3月底,我国新冠肺炎疫情得到有效防控,但海外确诊病例却持续暴增,防疫物资供不应求,某医疗器械厂开足马力,日夜生产防疫所需物品.已知该厂有两条不同生产线生产同一种产品各10万件,为保证质量,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如下所示:

该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格.

1)从等级为优秀的样本中随机抽取两件,求两件均由生产线生产的概率;

2)请完成下面质量等级与生产线产品列联表,并判断能不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.

生产线的产品

生产线的产品

合计

良好以上

合格

合计

附:

0.10

0.05

0.01

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年,山东省高考将全面实行“”的模式(即:语文、数学、外语为必考科目,剩下的物理、化学、历史、地理、生物、政治六科任选三科进行考试).为了了解学生对物理学科的喜好程度,某高中从高一年级学生中随机抽取人做调查.统计显示,男生喜欢物理的有人,不喜欢物理的有人;女生喜欢物理的有人,不喜欢物理的有.

1)据此资料判断是否有的把握认为“喜欢物理与性别有关”;

2)为了了解学生对选科的认识,年级决定召开学生座谈会.现从名男同学和名女同学(其中女喜欢物理)中,选取名男同学和名女同学参加座谈会,记参加座谈会的人中喜欢物理的人数为,求的分布列及期望.

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e为自然对数的底数.

1)讨论函数的单调性;

2)用表示中较大者,记函数.若函数上恰有2个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)经过点,离心率为分别为椭圆的左、右焦点.

1)求椭圆C的标准方程;

2)若点)在椭圆C上,求证;直线与直线关于直线l对称.

查看答案和解析>>

同步练习册答案