【题目】如图,在四棱锥中,底面是菱形,,是边的中点.平面平面,,.线段上的点满足.
(1)证明:面;
(2)求直线与平面所成角的正弦值.
【答案】(1)见解析 (2)
【解析】
(1)连接交于,连接,根据相似三角形和比例关系,证得,再利用线面平行的判定定理,即可证得平面;
(2)以为坐标原点,分别为轴建立空间直角坐标系,得到向量和平面的法向量,利用向量的夹角公式,即可求解.
(1)证明:连接交于,连接,
因为是菱形,且是的中点,所以,且,
又由已知,于是,所以,
又平面,平面,所以平面.
(2)作的中点,连接,则,知在平面内.
又由题知,,于是,
因为平面平面,平面平面,平面,
所以平面,故,,
在菱形中,,所以,
以为坐标原点,分别为轴建立空间直角坐标系,不妨设,
因为,,
所以为正三角形,,
于是,,,,
所以,.
由,且,可得,故,
由,知平面,
所以是平面的一个法向量,
则,
故直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱的各条棱长均相等, 为的中点, 分别是线段和线段上的动点(含端点),且满足.当运动时,下列结论中不正确的是( )
A. 平面平面 B. 三棱锥的体积为定值
C. 可能为直角三角形 D. 平面与平面所成的锐二面角范围为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=|2x+4|+|x-3|.
(1)解关于x的不等式f(x)<8;
(2)对于正实数a,b,函数g(x)=f(x)-3a-4b只有一个零点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为
(Ⅰ)求曲线的普通方程与直线的直角坐标方程;
(Ⅱ)已知直线与曲线交于两点,点是线段的中点,直线与轴交于点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】3月底,我国新冠肺炎疫情得到有效防控,但海外确诊病例却持续暴增,防疫物资供不应求,某医疗器械厂开足马力,日夜生产防疫所需物品.已知该厂有两条不同生产线和生产同一种产品各10万件,为保证质量,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如下所示:
该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格.
(1)从等级为优秀的样本中随机抽取两件,求两件均由生产线生产的概率;
(2)请完成下面质量等级与生产线产品列联表,并判断能不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.
生产线的产品 | 生产线的产品 | 合计 | |
良好以上 | |||
合格 | |||
合计 |
附:
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年,山东省高考将全面实行“选”的模式(即:语文、数学、外语为必考科目,剩下的物理、化学、历史、地理、生物、政治六科任选三科进行考试).为了了解学生对物理学科的喜好程度,某高中从高一年级学生中随机抽取人做调查.统计显示,男生喜欢物理的有人,不喜欢物理的有人;女生喜欢物理的有人,不喜欢物理的有人.
(1)据此资料判断是否有的把握认为“喜欢物理与性别有关”;
(2)为了了解学生对选科的认识,年级决定召开学生座谈会.现从名男同学和名女同学(其中男女喜欢物理)中,选取名男同学和名女同学参加座谈会,记参加座谈会的人中喜欢物理的人数为,求的分布列及期望.
,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()经过点,离心率为,,分别为椭圆的左、右焦点.
(1)求椭圆C的标准方程;
(2)若点()在椭圆C上,求证;直线与直线关于直线l:对称.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com