精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(x﹣ )+cos(x﹣ ),g(x)=2sin2
(1)若α是第一象限角,且f(α)= ,求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

【答案】
(1)解:∵f(x)= sinx﹣ cosx+ cosx+ sinx= sinx,

所以f(α)= sinα= ,所以sinα=

又α∈(0, ),所以cosα=

所以g(α)=2sin2 =1﹣cosα=


(2)解:由f(x)≥g(x)得 sinx≥1﹣cosx,

所以 sinx+ cosx=sin(x+ )≥

解2kπ+ ≤x+ ≤2kπ+ ,k∈z,求得2kπ≤x≤2kπ+ ,k∈z,

所以x的取值范围为〔2kπ,2kπ+ 〕k∈z.


【解析】(1)利用两角和差的三角公式化简函数f(x)的解析式,可得f(α)的解析式,再根据f(α)= ,求得cosα的值,从而求得g(α)=2sin2 =1﹣cosα的值.(2)由不等式可得 sin(x+ )≥ ,解不等式 2kπ+ ≤x+ ≤2kπ+ ,k∈z,求得x的取值集合.
【考点精析】掌握两角和与差的正弦公式和二倍角的余弦公式是解答本题的根本,需要知道两角和与差的正弦公式:;二倍角的余弦公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正方形内接于同一个直角三角形ABC中,如图所示,设,若两正方形面积分别为=441=440,则=______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为数列{an}的前n项和,Sn=(﹣1)nan ,n∈N* , 则
①a3=
②S1+S2+…+S100=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,底面为直角梯形,.

(1)求证:平面平面

(2)若直线与平面所成角为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】( 2013湖南)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:

X

1

2

3

4

Y

51

48

45

42

这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;
(2)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的序号是__________

①用刻画回归效果,当 越大时,模型的拟合效果越差;反之,则越好;

②可导函数处取极值,则

③归纳推理是由特殊到一般的推理,而演绎推理是由一般到特殊的推理;

④综合法证明数学问题是“由因导果”,分析法证明数学问题是“执果索因”。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4﹣4:坐标系与参数方程)
在直角坐标系xOy中,椭圆C的参数方程为 为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为 为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电影院共有个座位.某天,这家电影院上、下午各演一场电影.看电影的是甲、乙、丙三所中学的学生,三所学校的观影人数分别是985人, 1010人,2019人(同一所学校的学生有的看上午场,也有的看下午场,但每人只能看一-场).已知无论如何排座位,这天观影时总存在这样的一个座位,上、 下午在这个座位上坐的是同一所学校的学生,那么的可能取值有( )

A. 12个 B. 11个 C. 10个 D. 前三个答案都不对

查看答案和解析>>

同步练习册答案