精英家教网 > 高中数学 > 题目详情

求出下列等差数列中的未知项:
(1)m,  3,  5,  n;
(2)3,  m , n, -9,  p,  q

(1)m=1,n=7(2)-1,-5,-13,-17
(1)该数列为等差数列,公差为5-3=2,所以m=3-2=1, n=5+2=7.
(2) 该数列为等差数列,公差为(-9-3)÷3=-4, 
所以m=3+(-4)=-1,       n=-1+(-4)=-5,
p=-9+(-4)=-13,    q=-13+(-4)=-17
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•扬州模拟)已知等差数列{an}的各项均为正数,其前n项和为Sn,首项a1=1.
(Ⅰ)若
S1
+
S3
=2
S2
,求S5
(Ⅱ)若数列{an}中存在两两互异的正整数m、n、p同时满足下列两个条件:①m+p=2n;②
Sm
+
Sp
=2
Sn
,求数列的通项an
(Ⅲ)对于(Ⅱ)中的数列{an},设bn=3•(
1
2
)an
(n∈N*),集合Tn={bi•bj|1≤i≤j≤n,i,j∈N*},记集合Tn中所有元素之和Bn,试问:是否存在正整数n和正整数k,使得不等式
1
bnBn-k
+
1
k-bn+1Bn+1
>0
成立?若存在,请求出所有n和k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区一模)在等差数列{an}中,公差为d,前n项和为Sn.在等比数列{bn}中,公比为q,前n项和为S'n(n∈N*).
(1)在等差数列{an}中,已知S10=30,S20=100,求S30
(2)在等差数列{an}中,根据要求完成下列表格,并对①、②式加以证明(其中m、m1、m2、n∈N*).
用Sm表示S2m S2m=2Sm+m2d
Sm1Sm2表示Sm1+m2 Sm1+m2=
Sm1+Sm2+m1m2d
Sm1+Sm2+m1m2d
用Sm表示Snm Snm=
nSm+
n(n-1)
2
m2d
nSm+
n(n-1)
2
m2d
(3)在下列各题中,任选一题进行解答,不必证明,解答正确得到相应的分数(若选做二题或更多题,则只批阅其中分值最高的一题,其余各题的解答,不管正确与否,一律视为无效,不予批阅):
(ⅰ) 类比(2)中①式,在等比数列{bn}中,写出相应的结论.
(ⅱ) (解答本题,最多得5分)类比(2)中②式,在等比数列{bn}中,写出相应的结论.
(ⅲ) (解答本题,最多得6分)在等差数列{an}中,将(2)中的①推广到一般情况.
(ⅳ) (解答本题,最多得6分)在等比数列{bn}中,将(2)中的①推广到一般情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

求出下列等差数列中的未知项:

(1)m,  3,  5,  n;

(2)3,  m , n, -9,  p,  q.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求出下列等差数列中的未知项:

(1)m, 3, 5, n;

(2)3, m , n, -9, p, q.

查看答案和解析>>

同步练习册答案