精英家教网 > 高中数学 > 题目详情

【题目】设函数.

1)若,求函数处的切线方程;

2)若函数在处有两个极值点,其中.

i)求实数的取值范围;

ii)若e为自然对数的底数),求的最大值.

【答案】;(2)(i;(ii.

【解析】

1)求出的值,利用点斜式可得出所求切线的方程;

2)(i)求得,从而可知方程上有两个不等的实根,可得出关于实数的不等式组,即可求得实数的取值范围;

ii)由题知是两个极值点,结合韦达定理,得到关于的关系式,再用换元,构造关于的函数,求出函数的最大值.

1)若,则

此时,函数处的切线方程为,即

2)(i

由题意可知,关于的方程上有两个不等的实根,

所以,,解得.

因此,实数的取值范围是

ii)由(i)得

,则,令,其中.

所以,函数上单调递减,.

因此,当时,的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,已知.是线段的中点.

1)求直线与平面所成角的正弦值;

2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,下列说法错误的是(

A.若任意选择三门课程,选法总数为

B.若物理和化学至少选一门,选法总数为

C.若物理和历史不能同时选,选法总数为

D.若物理和化学至少选一门,且物理和历史不能同时选,选法总数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数在区间内是单调递增函数,求实数a的取值范围;

2)若函数有两个极值点,且,求证:.(注:为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,且椭圆上存在一点,满足.

(1)求椭圆的标准方程;

(2)过椭圆右焦点的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.

1)若厂家库房中(视为数量足够多)的每件产品合格的概率为 从中任意取出 3件进行检验,求至少有 件是合格品的概率;

2)若厂家发给商家 件产品,其中有不合格,按合同规定 商家从这 件产品中任取件,都进行检验,只有 件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线E1(a>0b>0)的右顶点为AO为坐标原点,MOA的中点,若以AM为直径的圆与E的渐近线相切,则双曲线E的离心率等于( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.

1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?

2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;

3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)设,若对任意的恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案