精英家教网 > 高中数学 > 题目详情

【题目】已知如图所示的三棱锥D﹣ABC的四个顶点均在球O的球面上,ABCDBC所在平面相互垂直,AB=3,AC=,BC=CD=BD=2,则球O的表面积为(

A.4π B.12π C.16π D.36π

【答案】C

【解析】

试题证明ACAB,可得ABC的外接圆的半径为,利用ABCDBC所在平面相互垂直,球心在BC边的高上,设球心到平面ABC的距离为h,则h2+3=R2=(﹣h)2,求出球的半径,即可求出球O的表面积.

解:AB=3,AC=,BC=2

AB2+AC2=BC2

ACAB

∴△ABC的外接圆的半径为

∵△ABCDBC所在平面相互垂直,

球心在BC边的高上,

设球心到平面ABC的距离为h,则h2+3=R2=(﹣h)2

h=1,R=2,

球O的表面积为4πR2=16π.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为支援武汉的防疫,某医院职工踊跃报名,其中报名的医生18人,护士12人,医技6人,根据需要,从中抽取一个容量为n的样本参加救援队,若采用系统抽样和分层抽样,均不用剔除人员.当抽取n+1人时,若采用系统抽样,则需剔除1个报名人员,则抽取的救援人员为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

1)讨论的单调性;

2)若,当时,求证:有两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位战士参加射击比赛训练.从若干次预赛成绩中随机抽取8次,记录如下:

82 81 79 78 95 88 93 84

92 95 80 75 83 80 90 85

(1)用茎叶图表示这两组数据,并分别求两组数据的中位数;

(2)现要从中选派一人参加射击比赛,从统计学的角度考虑,你认为选派哪位战士参加合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱柱中,底面是以为底边的等腰梯形,且.

I)求证:平面平面

(Ⅱ)若,求直线AB与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2+ax+blnxabR),曲线yfx)在点(1f1))处的切线方程为2xy20

1)判断fx)在定义域内的单调性,并说明理由;

2)若对任意的x∈(1+∞),不等式fxmex11)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角ABC中,a2_______,求ABC的周长l的范围.

在①(﹣cossin),(cossin),且,②cosA(2bc)=acosC,③f(x)=cosxcos(x)f(A)

注:这三个条件中任选一个,补充在上面问题中并对其进行求解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线过原点且倾斜角为.以坐标原点为极点,轴正半轴为极轴建立坐标系,曲线的极坐标方程为.在平面直角坐标系中,曲线与曲线关于直线对称.

(Ⅰ)求曲线的极坐标方程;

(Ⅱ)若直线过原点且倾斜角为,设直线与曲线相交于两点,直线与曲线相交于两点,当变化时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)证明:

2)令

①求的最大值;

②如果,且,证明:.

查看答案和解析>>

同步练习册答案