精英家教网 > 高中数学 > 题目详情

已知函数
(I)当a=18时,求函数的单调区间;
(II)求函数在区间上的最小值.

(1)函数f(x)的单调递增区间是(4,+∞),单调递减区间是(0.4).
(2)e2-4e+2-a.

解析试题分析:解:(1)当a=18时,f(x)=x2-4x-16lnx(x>0),所以f'(x)=2x-4- ,由f'(x)>0,解得x>4或一2<x<0,注意到x>0,所以函数f(x)的单调递增区间是(4,+∞).由f'(x)<0,解得0<x<4或x<-2.注意到x>0,所以函数f(x)的单调递减区间是(0,4).综上所述,函数f(x)的单调递增区间是(4,+∞),单调递减区间是(0.4).(2)当x∈[e,e2]时,f(x)=x2-4x+(2-x)lnx, f'(x)=2x-4+ 设g(x)=2x2-4x+2-a.当a<0时,有△=16-4×2(2-a)=8a<0,此时g(x)>0恒成立,所以f'(x)>0,f(x)在[e,e2]上单调递增,所以f(x)min=f(e)=e2-4e+2-a.当a>0时,△=16-4×2(2-a)=8a>0,令f'(x)>0,即2x2-4x+2-a>0,解得x>1+或x<1-令f'(x)<0,即2x2-4x+2-a<0,解得1-<x<.①当≥e2,即a≥2(e2-1)2时,f(x)在区间[e,e2]上单调递减,所以f(x)min=f(e2)=e4-4e2+4-2a;②当e<<e2,即2(e-1)2<a<2(e2-1)2时,在区间[e,]上单调递减,在区间[,e2]上单调递增,所以f(x)min=f()=a-3+(2-a)ln();③当≤e,即0<a≤2(e-1)2时,以f(x)在区间[e,e2]上单调递增,所以f(x)min=f(e)=e2-4e+2-a.综上所述,当a≥2(e2-1)2时,f(x)min=e4-4e2+4-2a;当2(e-1)2<a<2(e2-1)2时,f(x)min=-3+(2-a)ln();当a<0或0<a≤2(e-1)2时,f(x)min=e2-4e+2-a.
考点:导数的运用
点评:本题考查函数的单调区间的求法,考查函数的最小值的求法,综合性强,难度大,计算繁琐.解题时要认真审题,注意分类讨论思想和等价转化思想的合理运用。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(1)求函数的单调区间和极值。
(2)若关于的方程有三个不同实根,求实数的取值范围;
(3)已知当(1,+∞)时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数在上的最大值和最小值;
(2)讨论函数的单调性;
(3)若函数处取得极值,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)对于任意实数恒成立,求的最大值;
(2)若方程有且仅有一个实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

文科(本小题满分14分)设函数。(Ⅰ)若函数处与直线相切,①求实数,b的值;②求函数上的最大值;(Ⅱ)当时,若不等式对所有的都成立,求实数m的取值范围。)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,是否存在实数,使函数在上递减,在上递增?若存在,求出所有值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分8分)已知,函数.
(Ⅰ)求的极值(用含的式子表示);
(Ⅱ)若的图象与轴有3个不同交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中为常数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ) 当时,设函数的3个极值点为,且.
证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数处有极小值
(1)求函数的解析式;
(2)若函数只有一个零点,求的取值范围。

查看答案和解析>>

同步练习册答案