精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,椭圆的下顶点为,点是椭圆上异于点的动点,直线分别与轴交于点,且点是线段的中点.当点运动到点处时,点的坐标为

(1)求椭圆的标准方程;

(2)设直线轴于点,当点均在轴右侧,且时,求直线的方程.

【答案】(1)(2)

【解析】试题分析:(1)先求直线的方程,即得B坐标,有;再将N坐标代入椭圆方程解得a(2)设直线的斜率为,解得P点坐标,根据中点坐标公式得Q,利用直线方程与椭圆方程联立方程组解得M,N,根据横坐标之间比例关系求k,即得直线的方程.

试题解析:解:(1)由,得直线的方程为

,得点的坐标为

所以椭圆的方程为

将点的坐标代入,得,解得

所以椭圆的标准方程为

(2)方法一:设直线的斜率为,则直线的方程为

中,令,得,而点是线段的中点,所以

所以直线的斜率

联立,消去,得,解得

,得

,所以,得

,又,解得

所以直线的方程为

方法二:设点的坐标分别为

,得直线的方程为,令,得

同理,得

而点是线段的中点,所以,故

,所以,得,从而

解得

代入到椭圆C的方程中,得

,所以,即

解得(舍)或.又,所以点的坐标为

故直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱柱中,底面是正方形,且

1)求证

2)若动点在棱上,试确定点的位置,使得直线与平面所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线与直线垂直,椭圆经过点

(1)求椭圆的标准方程;

(2)过点作椭圆的两条互相垂直的弦.若弦的中点分别为,证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (m,n∈R)在x=1处取得极值2.

(1)求f(x)的解析式;

(2)k为何值时,方程f(x)-k=0只有1个根

(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆柱的母线, 是底面圆的直径, 的中点.

(Ⅰ)问: 上是否存在点使得平面?请说明理由;

(Ⅱ)在(Ⅰ)的条件下,若平面,假设这个圆柱是一个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果小鱼游到四棱锥外会有被捕的危险,求小鱼被捕的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长.现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边, 相切于点,

(1)当长为1分米时,求折卷成的包装盒的容积;

(2)当的长是多少分米时,折卷成的包装盒的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆上每个点的横坐标变为原来的4倍,纵坐标变为原来的3倍,得曲线以坐标原点为极点, 轴的非负轴分别交于半轴为极轴建立极坐标系,直线的极坐标方程为: 且直线在直角坐标系中与轴分别交于两点.

1)写出曲线的参数方程,直线的普通方程;

2)问在曲线上是否存在点使得的面积若存在求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数.时, .

(1) 求曲线在点处的切线方程;

(2) 若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年,世界乒乓球锦标赛在德国的杜赛尔多夫举行.整个比赛精彩纷呈,参赛选手展现出很高的竞技水平,为观众奉献了多场精彩对决.图1(扇形图)和表1是其中一场关键比赛的部分数据统计.两位选手在此次比赛中击球所使用的各项技术的比例统计如图1.在乒乓球比赛中,接发球技术是指回接对方发球时使用的各种方法.选手乙在比赛中的接发球技术统计如表1,其中的前4项技术统称反手技术,后3项技术统称为正手技术.

图1

选手乙的接发球技术统计表

技术

反手拧球

反手搓球

反手拉球

反手拨球

正手搓球

正手拉球

正手挑球

使用次数

20

2

2

4

12

4

1

得分率

55%

50%

0%

75%

41.7%

75%

100%

表1

(Ⅰ)观察图1,在两位选手共同使用的8项技术中,差异最为显著的是哪两项技术?

(Ⅱ)乒乓球接发球技术中的拉球技术包括正手拉球和反手拉球.从表1统计的选手乙的所有拉球中任取两次,至少抽出一次反手拉球的概率是多少?

(Ⅲ)如果仅从表1中选手乙接发球得分率的稳定性来看(不考虑使用次数),你认为选手乙的反手技术更稳定还是正手技术更稳定?(结论不要求证明)

查看答案和解析>>

同步练习册答案