精英家教网 > 高中数学 > 题目详情
某汽车制造商在2013年初公告:随着金融危机的解除,公司计划2013生产目标定为43万辆,已知该公司近三年的汽车生产量如下表所示:
 
 年份2010  2011 2012
 产量 8(万) 18(万) 30(万)
如果我们分别将2010,2011,2012,2013定义为第一、二、三、四年,现在有两个函数模型:二次函数模型f(x)=ax2+bx+c(a≠0),指函数模型g(x)=a•bx+c(a≠0,b>0,b≠1)那个模型能更好地反映该公司年销量y与年份x的关系?
考点:函数模型的选择与应用,指数型复合函数的性质及应用
专题:计算题,函数的性质及应用
分析:代入x=1,2,3;分别求二次函数与指数函数中的参数值,从而求得函数的预估值,从而解得.
解答: 解:二次函数模型f(x)=ax2+bx+c(a≠0)时,
a+b+c=8
4a+2b+c=18
9a+3b+c=30

解得,a=1,b=7,c=0;
f(x)=x2+7x,
f(4)=16+28=44;
指数函数模型g(x)=a•bx+c(a≠0,b>0,b≠1)时,
a•b+c=8
a•b2+c=18
a•b3+c=30

解得,a=
125
3
,b=
6
5
,c=-42;
故g(x)=
125
3
•(
6
5
x-42,
g(4)=
125
3
×(
6
5
4-42=44.4;
∵44比44.4更接近于43;
故二次函数模型f(x)=ax2+bx+c(a≠0)更好一些.
点评:本题考查了函数在实际问题中的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)定义在实数集上,f(2-x)=f(x),x≥1,f(x)=log3x,则有(  )
A、f(
1
3
)<f(2)<f(
1
2
B、f(
1
2
)<f(2)<f(
1
3
C、f(
1
2
)<f(
1
3
)<f(2)
D、f(2)<f(
1
2
)<f(
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合U=R,A={x∈N|x≤3},B={-2,-1,0,1,2},则(∁UA)∩B等于(  )
A、{-2,-1,0}
B、{-2,-1}
C、{1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1,F2是双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若△ABF2为等边三角形,则双曲线的离心率为(  )
A、
6
2
B、
3
C、
5
+1
2
D、
7

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
1-(sin4x-sin2xcos2x+cos4x)
sin2x
+3sin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们定义函数y=[x]([x]表示不大于x的最大整数)为“下整函数”;定义y={x}({x}表示不小于x的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x小时,则李刚应缴费为(单位:元)(  )
A、2[x+1]
B、2([x]+1)
C、2{x}
D、{2x}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn,若a2=4,2Sn=an(n+1),求a1,a3及数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若从区间(0,e)内随机取两个数,则这两个数之积不小于e的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x -k2+k+2,(k∈Z)满足f(2)<f(3).
(1)求实数k的值,并求出相应的函数f(x)解析式;
(2)对于(1)中的函数f(x),试判断是否存在正数q,使函数g(x)=1-qf(x)+(2q-1)x在区间[-1,2]上值域为[-4,
17
8
]
.若存在,求出此q.

查看答案和解析>>

同步练习册答案