精英家教网 > 高中数学 > 题目详情
(本小题满分14分)已知在直四棱柱ABCDA1B1C1D1中,底面ABCD为直角梯形,且满足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8,E,F分别是线段A1A,BC上的点.
(1) 若A1E=5,BF=10,求证:BE∥平面A1FD.
(2) 若BD⊥A1F,求三棱锥A1AB1F的体积.
(1) 过E作EG∥AD交A1D于G,连接GF.
∵=,∴=,∴EG=10=BF.
∵BF∥AD,EG∥AD,∴BF∥EG.

∴四边形BFGE是平行四边形.
∴BE∥FG.(4分)
又FG?平面A1FD,BE?平面A1FD,
∴BE∥平面A1FD.(6分)
(2) ∵在直四棱柱ABCDA1B1C1D1中,A1A⊥平面ABCD,BD?平面ABCD,∴A1A⊥BD.
由已知,BD⊥A1F,AA1∩A1F=A1
∴BD⊥平面A1AF.
∴BD⊥AF.(8分)
∵梯形ABCD为直角梯形,且满足AD⊥AB,BC∥AD,
∴在Rt△BAD中,tan∠ABD==2.
在Rt△ABF中,tan∠BAF==.
∵BD⊥AF,∴∠ABD+∠BAF=,
∴=,BF=4.(10分)
∵在直四棱柱ABCDA1B1C1D1中,A1A⊥平面ABCD,∴平面AA1B1B⊥平面ABCD,
又平面ABCD∩平面AA1B1B=AB,∠ABF=90°,
∴FB⊥平面AA1B1B,即BF为三棱锥FA1B1A的高.(12分)
∵∠AA1B1=90°,AA1=BB1=8,A1B1=AB=8,
∴S△AA1B1=32.
∴V三棱锥A1AB1F=V三棱锥FA1B1A=×S△AA1B1×BF=.(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,在棱长为的正方体中,异面直线所成的角等于(   )
A.  B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,在四棱锥P—ABCD中,PA⊥底面ABCD,底面为直角梯形,,且PA=AB=BC=1,AD=2.

(Ⅰ)设MPD的中点,求证:平面PAB
(Ⅱ)求侧面PAB与侧面PCD所成二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方形中,沿对角线将正方形折成一个直二面角,则点到直线的距离为(       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是( )
A.异面 B.平行C.相交D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四面体的三条棱两两垂直,,为四面体外一点.给出下列命题.
①不存在点,使四面体有三个面是直角三角形
②不存在点,使四面体是正三棱锥
③存在点,使垂直并且相等
④存在无数个点,使点在四面体的外接球面上
其中真命题的序号是
A.①②
B.②③
C.③
D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面上有四点,连结其中的两点的一切直线中的任何两条直线不重合、不平行、不垂直,从每一点出发,向其他三点作成的一切直线作垂线,则这些垂线的交点个数最多为
A.66B.60C.52D.44

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图5(1)是一个水平放置的正三棱柱ABC—A1B1C1,D是棱BC的中点,正三棱柱的正(主)视图如图5(2)。
(1)求正三棱柱ABC—A1B1C1的体积;
(2)证明:A1B//平面ADC1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图1,在正三角形ABC中,D、E、F分别为各边的中点,G、H、I、J分别为AF、AD、BE、DE的中点.将△ABC沿DE、EF、DF折成三棱锥以后,GH与IJ所成角的度数为(   )

A.90°            B.60°            C.45°         D.0°

查看答案和解析>>

同步练习册答案