精英家教网 > 高中数学 > 题目详情
已知集合A={x||x-1|+|x+1|≤3},集合B={x|x2-(2m+1)x+m2+m<0}若,A∩B≠∅,则实数m的取值范围为
 
考点:绝对值不等式的解法,一元二次不等式的解法
专题:不等式的解法及应用
分析:化简集合A,B,结合A∩B≠∅,得到端点的关系求m.
解答: 解:由已知A=[-
3
2
3
2
],B=(m,m+1),
如果A∩B=∅,则m>
3
2
或者m+1<-
3
2

所以要使A∩B≠∅,只要m∈(-
5
2
3
2
)

故答案为:(-
5
2
3
2
)
点评:本题考查了绝对值不等式以及一元二次不等式的解法和集合的运算,注意问题的转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=(x2-8x+c1)(x2-8x+c2)(x2-8x+c3) (x2-8x+c4),集合M={x|f(x)=0}={x1,x2…,x7}⊆N+,设c1≥c2≥c3≥c4,则c1-c4(  )
A、9B、8C、7D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2cos2x+
3
sin2x+a(a∈R,a为常数).
(1)若x∈R,求f(x)的最小正周期;
(2)若x∈[0,
π
2
]时,f(x)的最大值为4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|-1<x<5},集合B={x|2<x<7},求
(1)A∩B;
(2)(∁UA)∪B;
(3)(∁UA)∩(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:

从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有(  )
A、30B、20C、10D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
3
x3+x2-ax在区间(1,+∞)上单调递增,且在区间(1,2)上有零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

奇函数f(x)满足f(x+4)=f(x),且当x∈(-2,0]时,f(x)=log2(1-x),求f(2013)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示(单位:m),则该几何体的体积为(  )
A、2
3
m3
B、4
3
m3
C、
10
3
3
m3
D、
20
3
3
m3

查看答案和解析>>

科目:高中数学 来源: 题型:

球的半径为2,它的内接正方体的表面积为(  )
A、8B、16C、32D、64

查看答案和解析>>

同步练习册答案