【题目】网购逐步走入百姓生活,网络(电子)支付方面的股票受到一些股民的青睐.某单位4位热爱炒股的好朋友研究后决定购买“生意宝”和“九州通“这两支股票中的一支.他们约定:每人通过掷一枚质地均匀的骰子决定购买哪支股票,掷出点数为5或6的人买“九州通”股票,掷出点数为小于5的人买“生意宝”股票,且必须从“生意宝”和“九州通”这两支股票中选择一支股票购买.
(1)求这4人中恰有1人购买“九州通”股票的機率;
(2)用,分别表示这4人中购买“生意宝”和“九州通”股票的人数,记,求随机变量X的分布列与数学期望.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,短轴长为.
(1)求的方程;
(2)如图,经过椭圆左顶点且斜率为的直线与交于两点,交轴于点,点为线段的中点,若点关于轴的对称点为,过点作(为坐标原点)垂直的直线交直线于点,且面积为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形中,,,,直角梯形可以通过直角梯形以直线为轴旋转得到,且平面平面.
(1)求证:;
(2)设、分别为、的中点,为线段上的点(不与点重合).
(i)若平面平面,求的长;
(ii)线段上是否存在,使得直线平面,若存在求的长,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形与均为菱形,,且.
(1)求证:平面;
(2)求二面角的余弦值;
(3)若为线段上的一点,满足直线与平面所成角的正弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中函数,.
(1)求函数在点处的切线方程;
(2)当时,求函数在上的最大值;
(3)当时,对于给定的正整数,问:函数是否有零点?请说明理由.(参考数据,,,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:是正实数,当时,,则称是“—数列”.
(1)若是“—数列”且,写出的所有可能值;
(2)设是“—数列”,证明:是等差数列当且仅当单调递减;是等比数列当且仅当单调递增;
(3)若是“—数列”且是周期数列(即存在正整数,使得对任意正整数,都有),求集合的元素个数的所有可能值的个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com