精英家教网 > 高中数学 > 题目详情
7.复数i+i2+i3+…+i2012+i2013的值为i.

分析 利用等比数列的前n项和公式以及复数单位i2=-1,计算即可.

解答 解:复数i+i2+i3+…+i2012+i2013=$\frac{i(1{-i}^{2013})}{1-i}$
=$\frac{i{-i}^{2014}}{1-i}$
=$\frac{i+1}{1-i}$
=$\frac{{(1+i)}^{2}}{1{-i}^{2}}$
=i.
故答案为:i.

点评 本题考查了等比数列的前n项和公式与复数单位i的运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.(a+bi)(a-bi)(-a+bi)(-a-bi)等于(  )
A.(a2+b22B.(a2-b22C.a2+b2D.a2-b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=$\frac{1}{2}$(x-1)2+a的定义域和值域都是[1,b](b>1),则a+b的值等于(  )
A.-2B.2C.4D.2或4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x∈N,则方程x2+x-2=0的解集用列举法可表示为{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在矩形ABCD中,AB=2,AD=1,E为CD的中点,将△ADE沿AE折起,使平面ADE⊥平面ABCE,得到几何体D-ABCE,M点是此时BD的中点.

(1)求异面直BE和CM所成角的大小;
(2)求BD与平面ADE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义点P(x0,y0)到直线l:ax+by+c=0(a2+b2≠0)的有向距离为:$d=\frac{{a{x_0}+b{y_0}+c}}{{\sqrt{{a^2}+{b^2}}}}$.已知点P1、P2到直线l的有向距离分别是d1、d2.以下命题正确的是(  )
A.若d1=d2=1,则直线P1P2与直线l平行
B.若d1=1,d2=-1,则直线P1P2与直线l垂直
C.若d1+d2=0,则直线P1P2与直线l垂直
D.若d1•d2≤0,则直线P1P2与直线l相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥A-OBCD中,已知平面AOC⊥面OBCD,AO=2$\sqrt{3}$,OB=BC=2,CD=4,∠OBC=∠BCD=120°.
(I)求证:平面ACD⊥平面AOC;
(II)直线AO与平面OBCD所成角为60°,求二面角A-BC-D的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z满足zi=2-3i(i是虚数单位),则复数z的共轭复数为(  )
A.-3-2iB.-3+2iC.2+3iD.3-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=5cos(wx+φ)对任意实数x,都有$f(\frac{π}{3}+x)=f(\frac{π}{3}-x)$,函数g(x)=4sin(wx+φ)+1则$g(\frac{π}{3})$=(  )
A.1B.5C.-3D.0

查看答案和解析>>

同步练习册答案