精英家教网 > 高中数学 > 题目详情
设不等式2x-1>m(x2-1)对满足条件|m|≤2的一切实数m都恒成立,求实数x的取值范围.
分析:构造函数f(m)=-(x2-1)m+2x-1,原不等式等价于f(m)>0对于m∈[-2,2]恒成立,从而只需要
f(2)>0
f(-2)>0
即可,进而解不等式即可.
解答:解:令f(m)=-(x2-1)m+2x-1,原不等式等价于f(m)>0对于m∈[-2,2]恒成立,
由此得
f(2)>0
f(-2)>0
2(1-x2)+2x-1>0
-2(1-x2)+2x-1>0

解之得
7
-1
2
< x<
3
+1
2

∴实数的取值范围为(
7
-1
2
3
+1
2
)
点评:本题以不等式为载体,恒成立问题,关键是构造函数,变换主元,考查解不等式的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)设不等式2x-1>m(x2-1)对满足-2≤m≤2的一切实数m的取值都成立,求x的取值范围;
(2)是否存在m使得不等式2x-1>m(x2-1)对满足-2≤x≤2的实数x的取值都成立.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江西省九江一中高二(上)期中数学试卷(解析版) 题型:解答题

(1)设不等式2x-1>m(x2-1)对满足-2≤m≤2的一切实数m的取值都成立,求x的取值范围;
(2)是否存在m使得不等式2x-1>m(x2-1)对满足-2≤x≤2的实数x的取值都成立.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆八中高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

设不等式2x-1>m(x2-1)对满足条件|m|≤2的一切实数m都恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年四川省成都七中高三数学专项训练:反函数到奇偶性(解析版) 题型:解答题

设不等式2x-1>m(x2-1)对满足条件|m|≤2的一切实数m都恒成立,求实数x的取值范围.

查看答案和解析>>

同步练习册答案