精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的短轴端点为,点是椭圆上的动点,且不与重合,点满足.

(Ⅰ)求动点的轨迹方程;

(Ⅱ)求四边形面积的最大值.

【答案】;(.

【解析】

)设,结合垂直关系设出两直线的方程,相乘即可得到动点的轨迹方程;

)利用根与系数的关系表示四边形面积,转求函数最值即可.

)法一:设

直线

直线

整理得点的轨迹方程为

法二:设

直线

直线

,解得:,又

,代入.

的轨迹方程为

法三:设直线,则直线

直线与椭圆的交点的坐标为.

则直线的斜率为.

直线

解得:点的轨迹方程为:

)法一:设由()法二得:

四边形的面积

时,的最大值为.

法二:由()法三得:四边形的面积

当且仅当时,取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在对人们的休闲方式的一次调查中,共调查了110人,其中女性50人,男性60.女性中有30人主要的休闲方式是看电视,另外20人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外40人主要的休闲方式是运动.

1)根据以上数据建立一个列联表;

2)判断是否有99%的把握认为性别与休闲方式有关系.

下面临界值表供参考:

0.10

0.05

0.010

0.001

k

2.706

3.841

6.635

10.828

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,假命题的个数是(

1)若直线a在平面上,直线b不在平面上,则ab是异面直线;

2)若ab是异面直线、则与ab都垂直的直线有且只有一条

3)若ab是异面直线、若cd与直线ab都相交,则cd也是异面直线

4)设ab是两条直线,若平面,则平面.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴端点为,点是椭圆上的动点,且不与重合,点满足.

(Ⅰ)求动点的轨迹方程;

(Ⅱ)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四个小球,分别写有文、明、中、国四个字,有放回地从中任取一个小球,直到”“两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生03之间取整数值的随机数,分别用0123代表文、明、中、国这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:

232 321 230 023 123 021 132 220 001

231 130 133 231 013 320 122 103 233

由此可以估计,恰好第三次就停止的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.

(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;

(Ⅱ)设直线与曲线C交于P,Q两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的顶点边上的中线所在的直线方程是AC边上的高所在的直线方程是

求:(1AC边所在的直线方程;

2AB边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过M1),N1)两点,且圆心C在直线x+y30上,过点A(﹣10)的动直线l与圆C相交于PQ两点.

(Ⅰ)求圆C的方程;

(Ⅱ)当|PQ|4时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥中,底面的中点.

(1)求证:

(2)若二面角的大小为,求三棱锥的体积.

查看答案和解析>>

同步练习册答案