【题目】如图,边长为4的正方形中,半径为1的动圆Q的圆心Q在边CD和DA上移动(包含端点A,C,D),P是圆Q上及其内部的动点,设,则的取值范围是_____________.
【答案】
【解析】
建立如图所示平面直角坐标系,可得,=( 4,0),.由图可知,当动圆Q的圆心经过点D时,P.此时m+n取得最大值:4m+4n=8+,可得m+n=2+ .当动圆Q的圆心为点C或点A时,利用三角函数求m+n的最小值.
解:如图所示,边长为4的长方形ABCD中,动圆Q的半径为1,圆心Q在边CD和DA上移动(包含端点A,C,D),P是圆Q上及内部的动点,
向量 (m,n为实数),
=(0,4),=( 4,0),可得 =( 4m,4n).
当动圆Q的圆心经过点D时,如图:P.
此时m+n取得最大值:4m+4n=8+ ,可得m+n=2+ .
当动圆Q的圆心为点C时,BP与⊙C相切且点P在x轴的下方时,=(4+cosθ,sinθ),
此时,4m+4n=4﹣ sin(θ+ ),
m+n取得最小值为:1﹣,此时P( 4﹣ ,﹣).
同理可得,当动圆Q的圆心为点A时,BP与⊙A相切且点P在y轴的左方时,
m+n取得最小值为:1﹣,此时P(-,4﹣).
∴则m+n的取值范围为
故答案为.
科目:高中数学 来源: 题型:
【题目】某校兴趣小组在如图所示的矩形区域内举行机器人拦截挑战赛,在处按方向释放机器人甲,同时在处按某方向释放机器人乙,设机器人乙在处成功拦截机器人甲,若点在矩形区城内(包含边界),则挑战成功,否则挑战失败,已知米,为中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线远动方式行进.
(1)如图建系,求的轨迹方程;
(2)记与的夹角为,,如何设计的长度,才能确保无论的值为多少,总可以通过设置机器人乙的释放角度使之挑战成功?
(3)若与的夹角为,足够长,则如何设置机器人乙的释放角度,才能挑战成功?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD是一个菱形,三角形PAD是一个等腰三角形,∠BAD=∠PAD=,点E在线段PC上,且PE=3EC.
(1)求证:AD⊥PB;
(2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示为一正方体的平面展开图,在这个正方体中,有下列四个命题:
①AF⊥GC;
②BD与GC成异面直线且夹角为60;
③BD∥MN;
④BG与平面ABCD所成的角为45.
其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】类似于平面直角坐标系,我们可以定义平面斜坐标系:设数轴的交点为,与轴正方向同向的单位向量分别是,且与的夹角为,其中。由平面向量基本定理,对于平面内的向量,存在唯一有序实数对,使得,把叫做点在斜坐标系中的坐标,也叫做向量在斜坐标系中的坐标。在平面斜坐标系内,直线的方向向量、法向量、点方向式方程、一般式方程等概念与平面直角坐标系内相应概念以相同方式定义,如时,方程表示斜坐标系内一条过点(2,1),且方向向量为(4,-5)的直线。
(1)若, ,且与的夹角为锐角,求实数m的取值范围;
(2)若,已知点和直线 ①求l的一个法向量;②求点A到直线l的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形的长为2,宽为1, , 边分别在轴、轴的正半轴上, 点与坐标原点重合,将矩形折叠,使点落在线段上,设此点为.
(1)若折痕的斜率为-1,求折痕所在的直线的方程;
(2)若折痕所在直线的斜率为,( 为常数),试用表示点的坐标,并求折痕所在的直线的方程;
(3)当时,求折痕长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com