如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程.
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
【解析】(1)由题设知,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,
由题意得,=1,解得k=0或-,
故所求切线方程为y=3或3x+4y-12=0.
(2)因为圆心在直线y=2x-4上,所以圆C的方程为
(x-a)2+[y-2(a-2)]2=1.
设点M(x,y),因为MA=2MO,
所以=2,
化简得x2+y2+2y-3=0,即x2+(y+1)2=4,
所以点M在以D(0,-1)为圆心,2为半径的圆上.
由题意知,点M(x,y)在圆C上,所以圆C与圆D有公共点,
则|2-1|≤CD≤2+1,
即1≤≤3.
由5a2-12a+8≥0,得a∈R;
由5a2-12a≤0,得0≤a≤.
所以圆心C的横坐标a的取值范围为.
科目:高中数学 来源: 题型:
OP |
OA |
OB |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
A、偶函数 | B、奇函数 | C、不是奇函数,也不是偶函数 | D、奇偶性与k有关 |
查看答案和解析>>
科目:高中数学 来源: 题型:
试问:是否存在定点E、F,使|ME|、|MB|、|MF|成等差数列?若存在,求出E、F的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com