精英家教网 > 高中数学 > 题目详情
12.已知a>0,且a-a-1=3,求值:
(1)a2+a-2
(2)$\frac{({a}^{3}+{a}^{-3})({a}^{2}+{a}^{-2}-3)}{{a}^{4}-{a}^{-4}}$.

分析 (1)由a>0,且a-a-1=3,可得a2+a-2=(a-a-12+2.
(2)原式=$\frac{(a+{a}^{-1})({a}^{2}-1+{a}^{-2})({a}^{2}+{a}^{-2}-3)}{({a}^{2}+{a}^{-2})(a+{a}^{-1})(a-{a}^{-1})}$=$\frac{({a}^{2}-1+{a}^{-2})({a}^{2}+{a}^{-2}-3)}{({a}^{2}+{a}^{-2})(a-{a}^{-1})}$.

解答 解:(1)∵a>0,且a-a-1=3,
∴a2+a-2=(a-a-12+2=11.
(2)原式=$\frac{(a+{a}^{-1})({a}^{2}-1+{a}^{-2})({a}^{2}+{a}^{-2}-3)}{({a}^{2}+{a}^{-2})(a+{a}^{-1})(a-{a}^{-1})}$
=$\frac{({a}^{2}-1+{a}^{-2})({a}^{2}+{a}^{-2}-3)}{({a}^{2}+{a}^{-2})(a-{a}^{-1})}$
=$\frac{(11-1)×(11-3)}{11×3}$
=$\frac{80}{33}$.

点评 本题考查了指数幂的运算性质、乘法公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在平面直角坐标系上的区域M由不等式组$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y+1≥0}\\{x≤1}\end{array}\right.$给定,若点P为M上的动点,点A(-2,1),则$\overrightarrow{OP}$•$\overrightarrow{OA}$的最大值与最小值的和为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知(x+$\frac{1}{2\root{3}{x}}$)n(n∈N*)的展开式中,前三项系数成等差数列,则展开式中的常数项是(  )
A.28B.70C.$\frac{7}{16}$D.$\frac{35}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)在y轴上的截距为3,且满足f(x+2)-f(x)=4x+2.
(1)求f(x)的单调递增区间;
(2)在区间[-2,2]上,y=f(x)图象恒在直线y=-3x+m上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数f(x)=$\frac{\frac{1}{co{s}^{2}x}-tanx}{\frac{1}{co{s}^{2}x}+tanx}$+3的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=x2+$\frac{a}{{x}^{2}}$,是否存在实数a,使f(x)在(0,2]上单调递减,在(2,+∞) 上单调递增?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(log2x)=ax2-2x+1-a,a∈R.
(1)求f(x)的解析式;
(2)解关于x的方程f(x)=(a-1)•4x
(3)设h(x)=2-xf(x),a>1时,对任意x1,x2∈[-1,1]总有|h(x1)-h(x2)|≤$\frac{4a+1}{2}$成立求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设m,n是实数,a,b是实数,则下列各式中正确的有(  )
①am•an=am+n;②(amn=amn;③(ab)n=anbn
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对于函数f(x)的定义域中的任意x1,x2(x1≠x2),有如下的结论:①f(x1+x2)=f(x1)f(x2);②f(x1x2)=f(x1)+f(x2);③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0;④$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0.当f(x)=10x时,上述结论正确的是①③(写出所有正确结论的序号).

查看答案和解析>>

同步练习册答案