精英家教网 > 高中数学 > 题目详情

已知向量,求及向量的夹角.

解:

             

         

              

        因为

        所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
u
=(x,y)
与向量
v
=(y,2y-x)
的对应关系可用
v
=f(
u
)
表示.
(1)设
a
=(1,1),
b
=(1,0)
,求向量f(
a
)及f(
b
)
的坐标;
(2)证明:对于任意向量
a
b
及常数m、n,恒有f(m
a
+n
b
)=mf(
a
)+nf(
b
)
成立;
(3)求使f(
c
)=(3,5)
成立的向量
c

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知向量
m
=(ex,lnx+k)
n
=(1,f(x))
m
n
(k为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与y轴垂直,F(x)=xexf′(x).
(Ⅰ)求k的值及F(x)的单调区间;
(Ⅱ)已知函数g(x)=-x2+2ax(a为正实数),若对于任意x2∈[0,1],总存在x1∈(0,+∞),使得g(x2)<F(x1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天河区三模)设m∈R,在平面直角坐标系中,已知向量
a
=(x+
3
,my)
,向量
b
=(x-
3
,y)
a
b
,动点M(x,y)的轨迹为曲线E.
(I)求曲线E的方程,并说明该方程所表示曲线的形状;
(II) 已知m=
3
4
,F(0,-1),直线l:y=kx+1与曲线E交于不同的两点M、N,则△FMN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的实数k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-3,2),
b
=(2,1),
c
=(3,-1),t∈R.
(1)求|
a
+t
b
|的最小值及相应的t值;
(2)若
a
-t
b
c
共线,求实数t.

查看答案和解析>>

同步练习册答案