精英家教网 > 高中数学 > 题目详情
若a,b,c∈R+,且
1
a
+
1
b
+
2
c
=1
,则a+b+2c的最小值为
 
考点:基本不等式
专题:不等式的解法及应用
分析:a,b,c∈R+,且
1
a
+
1
b
+
2
c
=1
,可得a+b+2c=(a+b+2c)(
1
a
+
1
b
+
2
c
)
,展开利用基本不等式的性质即可得出.
解答: 解:∵a,b,c∈R+,且
1
a
+
1
b
+
2
c
=1

∴a+b+2c=(a+b+2c)(
1
a
+
1
b
+
2
c
)
=6+
b
a
+
2c
b
+
a
b
+
2a
c
+
2c
a
+
2b
c
≥6+2
b
a
×
a
b
+2
2c
b
×
2b
c
+2
2a
c
2c
a
=16,当且仅当a=b=c=4时取等号.
∴a+b+2c的最小值为16.
故答案为:16.
点评:本题考查了“乘1法”与基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x0是函数f(x)=2x-x-3的零点,则[x0](表示不超过x0的最大整数)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,a4=8,那么{an}的前5项和是(  )
A、-31B、15C、31D、63

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
x
,y=x2,y=3x,y=log2x中,在区间(0,+∞)上单调递减的是(  )
A、y=
1
x
B、y=x2
C、y=3x
D、y=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x-y-2=0与直线mx+y=0垂直,那么m的值是(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C所对的边,a=2,b=
7
,∠B=60°,则边长c=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,若直线l:ax+by=1平分圆x2+y2-2x-2y-3=0的周长,则
1
a
+
2
b
的最小值为(  )
A、4
2
B、3+2
2
C、2
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={1,2,3},B={x|x⊆A},则下列关系表述正确的是(  )
A、A∈BB、A∉B
C、A?BD、A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD中,底面ABCD为平行四边形,且∠DAB=60°,AB=2AD=2,PD⊥底面ABC,则:
(1)证明:PA⊥BD;
(2)若PD=AD,求平面APB与平面CPB夹角的余弦值.

查看答案和解析>>

同步练习册答案