Ñ¡×öÌ⣨Ç뿼ÉúÔÚµÚ16ÌâµÄÈý¸öСÌâÖÐÈÎÑ¡Á½Ìâ×÷´ð£¬Èç¹ûÈ«×ö£¬Ôò°´Ç°Á½Ìâ¼Ç·Ö£¬ÒªÐ´³ö±ØÒªµÄÍÆÀíÓëÑÝËã¹ý³Ì£©
£¨1£©Èçͼ£¬ÒÑÖªRt¡÷ABCµÄÁ½ÌõÖ±½Ç±ßBC£¬ACµÄ³¤·Ö±ðΪ3cm£¬4cm£¬ÒÔACΪֱ¾¶×÷Ô²Óëб±ßAB½»ÓÚµãD£¬ÊÔÇóBDµÄ³¤£®
£¨2£©ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ£¨¦ÈΪ²ÎÊý£©£¬ÇóÇúÏßCÉϵĵ㵽ֱÏßx-y+1=0µÄ¾àÀëµÄ×î´óÖµ£®
£¨3£©Èôa£¬bÊÇÕý³£Êý£¬a¡Ùb£¬x£¬y¡Ê£¨0£¬+¡Þ£©£¬Ôò+¡Ý£¬µ±ÇÒ½öµ±=ʱÉÏʽȡµÈºÅ£®ÇëÀûÓÃÒÔÉϽáÂÛ£¬Çóº¯Êýf£¨x£©=+£¨x¡Ê0£¬£©µÄ×îСֵ£®

¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¸ù¾Ý¹´¹É¶¨ÀíÇóµÃABµÄ³¤£¬ÔÙ¸ù¾ÝÇиîÏ߶¨Àí½â´ð£®
£¨2£©°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬³öÔ²ÐÄ£¨1£¬0£©µ½Ö±Ïßx-y+1=0µÄ¾àÀ룬½«´Ë¾àÀë¼ÓÉϰ뾶¼´µÃËùÇó£®
£¨3£©£©f£¨x£©=+ת»¯Îªf£¨x£©=+£¬ÔÙÀûÓøø³öµÄ²»µÈʽÐÔÖÊÇó½â£®
½â´ð£º½â£º£¨1£©¡ßAC=4£¬BC=3£¬
¸ù¾Ý¹´¹É¶¨ÀíµÃAB=5£»
¸ù¾ÝÇÐÏß³¤¶¨Àí£¬BC2=BD•BA£¬
¡à32=BD•5£¬
¡àBD=1.8
£¨2£©½«ÇúÏßCµÄ²ÎÊý·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÃ£¨x-1£©2+y2=1£¬
Ô²ÐÄ£¨1£¬0£©µ½Ö±Ïßx-y+1=0µÄ¾àÀëΪd==£®
ËùÇó×î´ó¾àÀëΪd+r=+1£®
£¨3£©f£¨x£©=+=+¡Ý=25£¬
µ±ÇÒ½öµ±=£¬x=ʱȡµÈºÅ£®
µãÆÀ£º£¨1£©±¾Ì⿼²éÓëÔ²ÓйصÄÏ߶㤶ÈÇó½â£¬Óõ½ÁËÇÐÏß³¤¶¨Àí£®Ó¦ÊìÁ·ÕÆÎÕ£º1£®ÉäÓ°¶¨ÀíµÄÄÚÈݼ°ÆäÖ¤Ã÷£» 2£®Ô²ÖܽÇÓëÏÒÇнǶ¨ÀíµÄÄÚÈݼ°ÆäÖ¤Ã÷£»3£®Ô²Ãݶ¨ÀíµÄÄÚÈݼ°ÆäÖ¤Ã÷£»4£®Ô²ÄÚ½ÓËıßÐεÄÐÔÖÊÓëÅж¨£®
£¨2£©±¾Ì⿼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬µãµ½Ö±ÏߵľàÀ빫ʽµÄÓ¦Óã¬Çó³öÔ²ÐÄ£¨1£¬0£©µ½Ö±ÏßÖ±Ïßx-y+1=0µÄ¾àÀ룬ÊǽâÌâµÄ¹Ø¼ü£®
£¨3£©±¾Ì⿼²é²»µÈʽÐÔÖʵÄÓ¦ÓãºÇó×îÖµ£®Òª´´Ôì³öÂú×ãÐÔÖʵÄÌõ¼þ£¬×¼È·Ó¦ÓÃÐÔÖÊÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ºþÄÏÄ£Ä⣩ѡ×öÌ⣨Ç뿼ÉúÔÚµÚ16ÌâµÄÈý¸öСÌâÖÐÈÎÑ¡Á½Ìâ×÷´ð£¬Èç¹ûÈ«×ö£¬Ôò°´Ç°Á½Ìâ¼Ç·Ö£¬ÒªÐ´³ö±ØÒªµÄÍÆÀíÓëÑÝËã¹ý³Ì£©
£¨1£©Èçͼ£¬ÒÑÖªRt¡÷ABCµÄÁ½ÌõÖ±½Ç±ßBC£¬ACµÄ³¤·Ö±ðΪ3cm£¬4cm£¬ÒÔACΪֱ¾¶×÷Ô²Óëб±ßAB½»ÓÚµãD£¬ÊÔÇóBDµÄ³¤£®
£¨2£©ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=1+cos¦È
y=sin¦È
£¨¦ÈΪ²ÎÊý£©£¬ÇóÇúÏßCÉϵĵ㵽ֱÏßx-y+1=0µÄ¾àÀëµÄ×î´óÖµ£®
£¨3£©Èôa£¬bÊÇÕý³£Êý£¬a¡Ùb£¬x£¬y¡Ê£¨0£¬+¡Þ£©£¬Ôò
a2
x
+
b2
y
¡Ý
(a+b)2
x+y
£¬µ±ÇÒ½öµ±
a
x
=
b
y
ʱÉÏʽȡµÈºÅ£®ÇëÀûÓÃÒÔÉϽáÂÛ£¬Çóº¯Êýf£¨x£©=
2
x
+
9
1-2x
£¨x¡Ê0£¬
1
2
£©µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010Ä꺣ÄÏÊ¡¸ßÈýÎåУÁª¿¼Êýѧ£¨Àí£© ÌâÐÍ£º½â´ðÌâ

Ñ¡×öÌ⣺Ç뿼ÉúÔÚµÚ22£¬23£¬24ÌâÖÐÈÎÑ¡Ò»Ìâ×ö´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»Ìâ¼Ç·Ö

22£®£¨±¾Ð¡ÌâÂú·Ö10·Ö£©Ñ¡ÐÞ4¡ª1¼¸ºÎÖ¤Ã÷Ñ¡½²

Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬ACÊÇÏÒ£¬¡ÏBACµÄƽ·ÖÏßAD½»¡ÑOÓÚµãD£¬DE¡ÍAC£¬½»ACµÄÑÓ³¤ÏßÓÚµãE£¬OE½»ADÓÚµãF¡£

   £¨I£©ÇóÖ¤£ºDEÊÇ¡ÑOµÄÇÐÏߣ»

   £¨II£©ÈôµÄÖµ.

 

 

23£®£¨±¾Ð¡ÌâÂú·Ö10·Ö£©Ñ¡ÐÞ4¡ª2×ø±êϵÓë²ÎÊý·½³Ì

        ÉèÖ±½Ç×ø±êϵԭµãÓ뼫×ø±ê¼«µãÖغϣ¬ xÖáÕý°ëÖáÓ뼫ÖáÖغϣ¬ÈôÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£¬µãF1¡¢F2ΪÆä×ó¡¢ÓÒ½¹µã£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ

   £¨I£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»

   £¨II£©ÇóÇúÏßCÉϵĶ¯µãPµ½Ö±ÏßlµÄ×î´ó¾àÀë¡£

24£®£¨±¾Ð¡ÌâÂú·Ö10·Ö£©Ñ¡ÐÞ4¡ª5²»µÈʽѡ½²

        ¶ÔÓÚÈÎÒâµÄʵÊýºã³ÉÁ¢£¬¼ÇʵÊýMµÄ×î´óÖµÊÇm¡£

   £¨1£©ÇómµÄÖµ£»

   £¨2£©½â²»µÈʽ

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010Ä꺣ÄÏÊ¡¸ßÈýÎåУÁª¿¼Êýѧ£¨ÎÄ£© ÌâÐÍ£ºÑ¡ÔñÌâ

Ñ¡×öÌ⣺Ç뿼ÉúÔÚµÚ22£¬23£¬24ÌâÖÐÈÎÑ¡Ò»Ìâ×ö´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»Ìâ¼Ç·Ö

22£®£¨±¾Ð¡ÌâÂú·Ö10·Ö£©Ñ¡ÐÞ4¡ª1¼¸ºÎÖ¤Ã÷Ñ¡½²

Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬ACÊÇÏÒ£¬¡ÏBACµÄƽ·ÖÏßAD½»¡ÑOÓÚµãD£¬DE¡ÍAC£¬½»ACµÄÑÓ³¤ÏßÓÚµãE£¬OE½»ADÓÚµãF¡£

   £¨I£©ÇóÖ¤£ºDEÊÇ¡ÑOµÄÇÐÏߣ»

   £¨II£©ÈôµÄÖµ.

 

23£®£¨±¾Ð¡ÌâÂú·Ö10·Ö£©Ñ¡ÐÞ4¡ª2×ø±êϵÓë²ÎÊý·½³Ì

        ÉèÖ±½Ç×ø±êϵԭµãÓ뼫×ø±ê¼«µãÖغϣ¬ xÖáÕý°ëÖáÓ뼫ÖáÖغϣ¬ÈôÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£¬µãF1¡¢F2ΪÆä×ó¡¢ÓÒ½¹µã£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ

   £¨I£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»

   £¨II£©ÇóÇúÏßCÉϵĶ¯µãPµ½Ö±ÏßlµÄ×î´ó¾àÀë¡£

24£®£¨±¾Ð¡ÌâÂú·Ö10·Ö£©Ñ¡ÐÞ4¡ª5²»µÈʽѡ½²

        ¶ÔÓÚÈÎÒâµÄʵÊýºã³ÉÁ¢£¬¼ÇʵÊýMµÄ×î´óÖµÊÇm¡£

   £¨1£©ÇómµÄÖµ£»

   £¨2£©½â²»µÈʽ

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

Ñ¡×öÌ⣨Ç뿼ÉúÔÚµÚ16ÌâµÄÈý¸öСÌâÖÐÈÎÑ¡Á½Ìâ×÷´ð£¬Èç¹ûÈ«×ö£¬Ôò°´Ç°Á½Ìâ¼Ç·Ö£¬ÒªÐ´³ö±ØÒªµÄÍÆÀíÓëÑÝËã¹ý³Ì£©
£¨1£©Èçͼ£¬ÒÑÖªRt¡÷ABCµÄÁ½ÌõÖ±½Ç±ßBC£¬ACµÄ³¤·Ö±ðΪ3cm£¬4cm£¬ÒÔACΪֱ¾¶×÷Ô²Óëб±ßAB½»ÓÚµãD£¬ÊÔÇóBDµÄ³¤£®
£¨2£©ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪÊýѧ¹«Ê½£¨¦ÈΪ²ÎÊý£©£¬ÇóÇúÏßCÉϵĵ㵽ֱÏßx-y+1=0µÄ¾àÀëµÄ×î´óÖµ£®
£¨3£©Èôa£¬bÊÇÕý³£Êý£¬a¡Ùb£¬x£¬y¡Ê£¨0£¬+¡Þ£©£¬ÔòÊýѧ¹«Ê½+Êýѧ¹«Ê½¡ÝÊýѧ¹«Ê½£¬µ±ÇÒ½öµ±Êýѧ¹«Ê½=Êýѧ¹«Ê½Ê±ÉÏʽȡµÈºÅ£®ÇëÀûÓÃÒÔÉϽáÂÛ£¬Çóº¯Êýf£¨x£©=Êýѧ¹«Ê½+Êýѧ¹«Ê½£¨x¡Ê0£¬Êýѧ¹«Ê½£©µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸