精英家教网 > 高中数学 > 题目详情
已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率    (     )
               B                 C               D 
D

分析:根据椭圆的长轴长是短轴长的2倍,c= ,可求椭圆的离心率.
解:由题意,∵椭圆的长轴长是短轴长的2倍,
∴a=2b
∴c==b
∴e==
故答案为:D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆,P为该椭圆上一点.
(1)若P到左焦点的距离为3,求到右准线的距离;
(2)如果F1为左焦点,F2为右焦点,并且,求的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是椭圆)的左、右焦点,是其右准线上纵坐标为为半焦距)的点,且,则椭圆的离心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点,则椭圆方程是         (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知椭圆,直线,F为椭圆的右焦点,M为椭圆上任意一点,记M到直线L的距离为d.

(Ⅰ) 求证:为定值;
(Ⅱ) 设过右焦点F的直线m的倾斜角为,m交椭圆于A、B两点,且,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的两个焦点为,点满足的取值范围为      ,直线与椭圆的公共点的个数为  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆G:的两个焦点为是椭圆上一点,且满
(1)求离心率的取值范围;
(2)当离心率取得最小值时,点到椭圆上点的最远距离为
①求此时椭圆G的方程;
②设斜率为的直线与椭圆G相交于不同两点的中点,问:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆+ =1的两焦点为F1、F2,点P在椭圆上,且直线PF1、PF2的夹角为,则△PF1F2的面积为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左,右焦点为,(1,)为椭圆上一点,椭圆的
长半轴长等于焦距,曲线C是以坐标原点为顶点,以为焦点的抛物线,自引直线交曲线C于P,Q两个不同的交点,点P关于轴的对称点记为M,设
(1)求椭圆方程和抛物线方程;
(2)证明:
(3)若求|PQ|的取值范围

查看答案和解析>>

同步练习册答案