【题目】对于定义域为的函数,若满足①;②当,且时,都有;③当,且时, ,则称为“偏对称函数”.现给出四个函数:
①; ② ;
③ ; ④.
则其中是“偏对称函数”的函数为__________.
【答案】②④
【解析】由当,且时,都有可得或,即条件②等价于函数在上单调递减,在上单调递增
对于,显然满足①,且易证是偶函数,当时, ,所以在上单调递增,因为是偶函数,所以在上单调递减,满足条件②,由是偶函数可得当,且时, ,故不满足条件③;
对于,显然满足条件①,当时, ,则在上单调递增,当时, ,由复合函数单调性法则可知在上单调递减,故满足条件②,由函数的单调性可知,当时,且时, ,不妨设,则,设,则, 在上单调递减,所以,即,即,所以,即满足条件③;
对于,易证是奇函数,由奇函数的性质可得, 在和上的单调性相同,故不满足②;
对于,显然满足条件①, ,则,满足条件②,由的单调性知当时,且时, ,不妨设,则, ,
令,则,当且仅当即时,取等号,所以在上是增函数,所以,即,所以,即,所以,满足条件③;
故答案为②④
科目:高中数学 来源: 题型:
【题目】袋子里有编号为的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号.
甲说:“我无法确定.”
乙说:“我也无法确定.”
甲听完乙的回答以后,甲又说:“我可以确定了.”
根据以上信息, 你可以推断出抽取的两球中
A. 一定有3号球 B. 一定没有3号球 C. 可能有5号球 D. 可能有6号球
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为矩形,AB=PA=BC(a>0).
(1)当a=1时,求证:BD⊥PC;
(2)若BC边上有且只有一个点Q,使得PQ⊥QD,求此时二面角A-PD-Q的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:
①f(x)是周期函数;②f(x)的图象关于x=1对称;③f(x)在[1,2]上是减函数;④f(2)=f(0).
其中正确命题的序号是____________.(请把正确命题的序号全部写出来)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个几何体的三视图如图所示,其中正视图与侧视图是腰长为6的等腰直角三角形,俯视图是正方形.
(1)请画出该几何体的直观图,并求出它的体积;
(2)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD—A1B1C1D1?如何组拼?试证明你的结论;
(3)在(2)的情形下,设正方体ABCD—A1B1C1D1的棱CC1的中点为E, 求平面AB1E与平面ABC所成二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点和上的点,满足, .
(1)当点在圆上运动时,求点的轨迹方程;
(2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点, , 是坐标原点,且时,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com