精英家教网 > 高中数学 > 题目详情
10.已知平行四边形ABCD中,$|\overrightarrow{AB}|=3$,$|\overrightarrow{AD}|=2$,对角线AC交BD于点O,AB上一点E满足$\overrightarrow{OE}•\overrightarrow{BD}=0$,F为AC上任意一点.
(Ⅰ)求$\overrightarrow{AE}•\overrightarrow{BD}$值;
(Ⅱ)若$|\overrightarrow{BD}|=\sqrt{10}$,求$\overrightarrow{AF}•\overrightarrow{EF}$的最小值.

分析 (I)$\overrightarrow{AB},\overrightarrow{AD}$表示出$\overrightarrow{AE},\overrightarrow{BD}$,代入平面向量的数量积公式运算即可;
(II)利用余弦定理求出cos∠BAD,根据(I)得出$\overrightarrow{AE}=\frac{1}{3}\overrightarrow{AB}$,设$\overrightarrow{AF}=y\overrightarrow{AC}$,得出$\overrightarrow{AF}•\overrightarrow{EF}$关于y的二次函数,从而得出最小值.

解答 解:(Ⅰ)由平行四边形ABCD知OA=OC,OB=OD,
∴$\overrightarrow{AO}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}$,$\overrightarrow{BD}=\overrightarrow{AD}-\overrightarrow{AB}$,
∵$\overrightarrow{AE}=\overrightarrow{AO}+\overrightarrow{OE}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}+\overrightarrow{OE}$,
∴$\overrightarrow{AE}•\overrightarrow{BD}=(\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}+\overrightarrow{OE})•\overrightarrow{BD}=(\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD})•(\overrightarrow{AD}-\overrightarrow{AB})+\overrightarrow{OE}•\overrightarrow{BD}$,
而$\overrightarrow{OE}•\overrightarrow{BD}=0$,$|\overrightarrow{AB}|=3$,$|\overrightarrow{AD}|=2$,
∴$\overrightarrow{AE}•\overrightarrow{BD}=\frac{1}{2}{\overrightarrow{AD}^2}-\frac{1}{2}{\overrightarrow{AB}^2}=-\frac{5}{2}$.
(Ⅱ)∵$|\overrightarrow{BD}|=\sqrt{10}$,
∴${\overrightarrow{BD}^2}={(\overrightarrow{AD}-\overrightarrow{AB})^2}=4+9-2×2×3cos∠BAD=10$,
∴$cos∠BAD=\frac{1}{4}$,
∴${\overrightarrow{AC}^2}={(\overrightarrow{AB}+\overrightarrow{AD})^2}=4+9+2×2×3cos∠BAD=16$,$\overrightarrow{AB}•\overrightarrow{AD}=\frac{3}{2}$,
设$\overrightarrow{AE}=x\overrightarrow{AB}$,由(Ⅰ)$\overrightarrow{AE}•\overrightarrow{BD}=-\frac{5}{2}=x\overrightarrow{AB}•(\overrightarrow{AD}-\overrightarrow{AB})=x\overrightarrow{AB}•\overrightarrow{AD}-x{\overrightarrow{AB}^2}$,
解得$x=\frac{1}{3}$,即$\overrightarrow{AE}=\frac{1}{3}\overrightarrow{AB}$,
再设$\overrightarrow{AF}=y\overrightarrow{AC}$,y∈[0,1],
∴$\overrightarrow{AF}•\overrightarrow{EF}=\overrightarrow{AF}•(\overrightarrow{AF}-\overrightarrow{AE})={\overrightarrow{AF}^2}-\overrightarrow{AF}•\overrightarrow{AE}$=${y^2}{\overrightarrow{AC}^2}-y\overrightarrow{AC}•\frac{1}{3}\overrightarrow{AB}=16{y^2}-y(\overrightarrow{AB}+\overrightarrow{AD})•\frac{1}{3}\overrightarrow{AB}$=$16{y^2}-\frac{y}{3}{\overrightarrow{AB}^2}-\frac{y}{3}\overrightarrow{AD}•\overrightarrow{AB}=16{y^2}-\frac{7}{2}y=16{(y-\frac{7}{64})^2}-\frac{49}{256}$.
显然y∈[0,1],当$y=\frac{7}{64}$时,$\overrightarrow{AF}•\overrightarrow{EF}$有最小值为$-\frac{49}{256}$.

点评 本题考查了平面向量的基本定理,平面向量的数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某同学参加学校自主招生3门课程的考试,假设该同学第一门课程取得优秀成绩概率为$\frac{2}{5}$,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为
ξ0123
p$\frac{6}{125}$xy$\frac{24}{125}$
(1)求该生至少有1门课程取得优秀成绩的概率及求p,q(p<q)的值;
(2)求该生取得优秀成绩课程门数的数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果执行如图的程序框图,且输入n=4,m=3,则输出的p=(  )
A.6B.24C.120D.720

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-aln x.
(1)求函数f(x)的单调区间;
(2)当x=2时,函数f(x)取得极小值,求a的值;
(3)若函数f(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.《九章算术》中有一个“两鼠穿墙”问题:今有垣(墙,读音)厚五尺,两鼠对穿,大鼠日穿(第一天挖)一尺,小鼠也日穿一尺.大鼠日自倍(以后每天加倍),小鼠日自半(以后每天减半).问何日(第几天)两鼠相逢(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-1|+|x-5|,g(x)=$\sqrt{1+{x}^{2}}$.
(1)求f(x)的最小值;
(2)记f(x)的最小值为m,已知实数a,b满足a2+b2=6,求证:g(a)+g(b)≤m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{2}$+y2=1的左顶点为A,右焦点为F,O为原点,M,N是y轴上的两个动点,且MF⊥NF,直线AM和AN分别与椭圆C交于E,D两点.
(Ⅰ)求△MFN的面积的最小值;
(Ⅱ)证明;E,O,D三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数y=f(x)在R上单调递减,且f(m2)>f(m),则实数m的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数g(x)=tan($\frac{π}{3}$x-$\frac{π}{6}$)的最小正周期为M,则f(x)=Msin(2x-$\frac{π}{6}$)在区间[0,$\frac{π}{2}$]上的值域为[-$\frac{3}{2}$,3],.

查看答案和解析>>

同步练习册答案