精英家教网 > 高中数学 > 题目详情

【题目】设f(x)=﹣ x3+ x2+2ax.
(1)当a=1时,求f(x)在[1,4]上的最大值和最小值.
(2)若f (x)在( ,+∞)上存在单调递增区间,求a的取值范围.

【答案】
(1)解:f′(x)=﹣x2+x+2 令f′(x)=0,x=2或x=﹣1

f′(x)>0解得﹣1<x<2 f′(x)>0解得 x>2或x<﹣1

所以f(x)在(2,4),)上单调递减,在(1,2)上单调递增.

所以f(x)在[1,4]上的最大值为f(2)= ..

又f(4)﹣f(1)=﹣ +6<0,即f(4)<f(1),

所以f(x)在[1,4]上的最小值为f(4)=8﹣ =﹣


(2)解:由f′(x)=﹣x2+x+2a=﹣(x﹣ 2+ +2a,

当x∈( ,+∞)时,f′(x)的最大值为f′( )= +2a,令 +2a>0,得a>﹣

所以,当a>﹣ 时,f(x)在( ,+∞)上存在单调递增区间


【解析】(1)当a=1时,求出导函数,求出极值点,判断函数的单调性,然后求f(x)在[1,4]上的最大值和最小值.(2)利用导函数是二次函数,判断导函数的最值,讨论a的范围,利用f (x)在( ,+∞)上存在单调递增区间,即可求a的取值范围.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC﹣A1B1C1中,AB=AC=1,∠BAC=90°,且异面直线A1B与B1C1所成的角等于60°,设AA1=a.

(1)求a的值;
(2)求平面A1BC1与平面B1BC1所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosx+ax2﹣1,a∈R.
(1)当a=0时,求函数f(x)在 处的切线方程;
(2)当a=1时,求函数f(x)在[﹣π,π]上的最大值和最小值;
(3)若对于任意的实数x恒有f(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a、b表示两条直线,α、β表示两个平面,则下列命题正确的是 . (填写所有正确命题的序号) ①若a∥b,a∥α,则b∥α;②若a∥b,aα,b⊥β,则α⊥β;
③若α∥β,a⊥α,则a⊥β;④若α⊥β,a⊥b,a⊥α,则b⊥β.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,其中 ,k∈R.
(1)当k为何值时,有
(2)若向量 的夹角为钝角,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知动直线l过点 ,且与圆O:x2+y2=1交于A、B两点.
(1)若直线l的斜率为 ,求△OAB的面积;
(2)若直线l的斜率为0,点C是圆O上任意一点,求CA2+CB2的取值范围;
(3)是否存在一个定点Q(不同于点P),对于任意不与y轴重合的直线l,都有PQ平分∠AQB,若存在,求出定点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果不等式ax2+bx+c>0的解集为{x|﹣2<x<4},那么对于函数f(x)=ax2+bx+c应有(
A.f(5)<f(2)<f(﹣1)
B.f(﹣1)<f(5)<f(2)
C.f(2)<f(﹣1)<f(5)
D.f(5)<f(﹣1)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为

(Ⅰ)确定 的值;

(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.

①请将列联表补充完整;

网龄3年以上

网龄不足3年

合计

购物金额在2000元以上

35

购物金额在2000元以下

20

合计

100

②并据此列联表判断,是否有%的把握认为网购金额超过2000元与网龄在三年以上有关?

参考数据:

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x,第二次出现的点数为y.
(1)求事件“x+y≤3”的概率;
(2)求事件“|x﹣y|=2”的概率.

查看答案和解析>>

同步练习册答案