精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2lnx-a(x2-1),a∈R.
(1)当a=-1时,求曲线f(x)在(1,f(1))处的切线方程;
(2)当x≥1时,f(x)≥0成立,求a的取值范围.
考点:利用导数求闭区间上函数的最值,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(1)求函数的导数,根据导数的几何意义即可求曲线f(x)在(1,f(1))处的切线方程;
(2)利用不等式恒成立,利用参数分离法,构造函数求函数的最值即可.
解答: 解:(1)当a=-1时,函数f(x)=x2lnx+x2-1,则f(1)=0,
函数的导数f′(x)=2xlnx+3x,
则f′(1)=3,
则曲线f(x)在(1,f(1))处的切线方程为y=3(x-1)=3x-3;
(2)当x≥1时,由f(x)≥0得x2lnx-a(x2-1)≥0,
当x=1时,不等式成立,
当x≠1时,得a≤
x2lnx
x2-1
,x≥1,
设g(x)=
x2lnx
x2-1
,x≥1,
则函数的导数为g′(x)=
x(x2-2lnx-1)
(x2-1)2

问题转换为求函数g(x)=(x^2lnx)/(x^2-1)的最小值;
令h(x)=x(x2-1-2lnx),
则h'(x)=3x2-2lnx-3,
h''(x)=6x-
2
x

∵x>1,∴h′′(x)>0
即h'(x)为增函数
则h'(x)>h'(1)=0
h(x)为增函数,
则h(x)>h(1)=0
即g'(x)>0即g(x)为增函数,
lim
x→1
x2lnx
x2-1
=
1
2
(用洛必达法则),
则a≤
1
2

综上所述:a∈(-∞,
1
2
]
点评:本题主要考查导数的应用,根据导数的几何意义以及函数最值和导数之间的关系是解决本题的关键.综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一根水平放置的长方体形枕木的安全负荷与它的宽度a成正比,与它的厚度d的平方成正比,与它的长度l的平方成反比.
(1)将此枕木翻转90°(即宽度变为厚度),枕木的安全负荷如何变化?为什么?(设翻转前后枕木的安全负荷分别为y1,y2且翻转前后的比例系数相同,都为同一正常数k)
(2)现有一根横断面为半圆(已知半圆的半径为R)的木材,用它来截取成长方体形的枕木,其长度为10,问截取枕木的厚度为d为多少时,可使安全负荷y最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1+3x)(2x-
1
x2
n(n∈N*)的展开式中没有常数项,且4<n<8,求展开式中含x5的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量y(百件)与销售单价x(元/件)之间的关系为:y=
-2x+140,(40≤x≤60)
-
1
2
x+50,(60<x≤80)

职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.
(1)当销售价为每件50元时,该店正好收支平衡,求该店的职工人数;
(2)若该店只有20名职工,问销售单价定为多少元时,该专卖店月利润最大?并求出最大利润(利润=收入-支出)

查看答案和解析>>

科目:高中数学 来源: 题型:

通过随机调查50名个人收入不同的消费者购物方式是否喜欢网购,调查结果表明:在喜欢网购的25人中有18人是低收入的人,另外7人是高收入的人,在不喜欢网购的25人中有6人是低收入的人,另外19人是高收入的人.
(1)试根据以上数据完成2×2列联表,并用独立性检验的思想,指出有多大把握认为是否喜欢网购与个人收入高低有关系;
 喜欢网购不喜欢网购总计
低收入的人   
高收入的人   
总计   
(2)将期中某5名细环网购且收入较低的人分别编号为1、2、3、4、5,某5名细环万巩固且收入较高的人也分别编号为1、2、3、4、5,从这两组人中各任选一人进行网购交流,求被选出的2人的编号之和为3的倍数或4的倍数的概率.
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,期中n=a+b+c+d.
参考数据:
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直二面角D-AB-E中,四边形ABCD是边长为2的正方形,△AEB是等腰直角三角形,其中∠AEB=90°,则点D到平面ACE的距离为(  )
A、
3
3
B、
2
3
3
C、
3
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=tan2x-tan(π-x)
(1)求f(
π
3
)的值       
(2)若x∈[-
π
4
π
4
],求f(x)的最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+x-6y+m=0与直线l:x+2y-3=0,若直线l与圆C没有公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线ax+by+1=0(a>0,b>0)过圆x2+y2+2x+2y=0的圆心,则
1
a
+
1
b
的最小值为(  )
A、2B、4C、8D、16

查看答案和解析>>

同步练习册答案