【题目】已知函数f(x)=2x﹣ ,且f( )=3.
(1)求实数a的值;
(2)判断函数f(x)在(1,+∞)上的单调性,并证明.
【答案】
(1)解:∵f(x)=2x﹣ ,且f( )=3,
∴f( )=1﹣2a=3,解得:a=﹣1
(2)解:由(1)得:f(x)=2x+ ,f(x)在(1,+∞)递增,
证明如下:
设x1>x2>1,
则f(x1)﹣f(x2)=2x1+ ﹣2x2﹣ =(x1﹣x2)( ),
∵x1>x2>1,
∴x1﹣x2>0,2x1x2﹣1>0,
∴f(x1)>f(x2),
∴f(x)在(1,+∞)递增
【解析】(1)根据f( )=3,得到关于a的方程,解出即可;(2)根据函数的单调性的定义证明即可.
【考点精析】关于本题考查的函数单调性的判断方法和函数的值,需要了解单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.
(1)求甲、乙两家公司共答对道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题: ,命题 .
(1)若命题为真命题,求实数的取值范围;
(2)若命题为真命题,求实数的取值范围;
(3)若命题“”为真命题,且命题“”为假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中有这样一则问题:“今有良马与弩马发长安,至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马.”则现有如下说法:
①弩马第九日走了九十三里路;
②良马前五日共走了一千零九十五里路;
③良马和弩马相遇时,良马走了二十一日.
则以上说法错误的个数是( )个
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设为曲线上的一个不在轴上的动点, 为坐标原点,过点作的平行线交曲线于、两个不同的点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=x2+2bx+c(b,c∈R).
(1)若函数y=f(x)的零点为﹣1和1,求实数b,c的值;
(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)=﹣x|x|+px.
(1)判断函数的奇偶性;
(2)当p=﹣2时,判断函数f(x)在(﹣∞,0)上单调性并加以证明;
(3)当p=2时,画出函数的图象并指出单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com