精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2 , a3 , a2+2成等差数列,求an的通项公式;
(2)设双曲线x2 =1的离心率为en , 且e2= ,证明:e1+e2++en

【答案】
(1)

解:∵Sn+1=qSn+1 ①,∴当n≥2时,Sn=qSn1+1 ②,两式相加你可得an+1=qan

即从第二项开始,数列{an}为等比数列,公比为q.

当n=1时,∵数列{an}的首项为1,∴a1+a2=S2=qa1+1,∴a2=q=a1q,

∴数列{an}为等比数列,公比为q.

∵2a2,a3,a2+2成等差数列,

∴2q+q+2=2q2,求得q=2,或 q=﹣

根据q>0,故取q=2,∴an=2n1,n∈N*


(2)

证明:设双曲线x2 =1的离心率为en

∴en= =

由于数列{an}为首项等于1、公比为q的等比数列,

∴e2= = = ,q=

∴an= ,∴en= = =

∴e1+e2++en>1+ + +…+ = = ,原不等式得证


【解析】(1)由条件利用等比数列的定义和性质,求得数列{an}为首项等于1、公比为q的等比数列,再根据2a2 , a3 , a2+2成等差数列求得公比q的值,可得{an}的通项公式.
(2)利用双曲线的定义和简单性质求得en= ,根据e2= = ,求得q的值,可得{aspan>n}的解析式,再利用放缩法可得∴en= ,从而证得不等式成立.
本题主要考查等差数列、等比数列的定义和性质,用放缩法进行数列求和,数曲线的简单性质,属于难题.
【考点精析】根据题目的已知条件,利用数列的前n项和的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=a(x﹣lnx)+ ,a∈R.
(1)讨论f(x)的单调性;
(2)当a=1时,证明f(x)>f′(x)+ 对于任意的x∈[1,2]成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12)如图所示,函数的一段图象过点

1)求函数的表达式;

2)将函数的图象向右平移个单位,得函数的图象,求函数的最大值,并求此时自变量的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为(a>0,β为参数).以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos .

(1)若曲线Cl只有一个公共点,求a的值;

(2)AB为曲线C上的两点,且∠AOB,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcos θ=4.

(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|·|OP|=16,求点P的轨迹C2的直角坐标方程;

(2)设点A的极坐标为,点B在曲线C2上,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)讨论f(x)的单调性;
(2)确定a的所有可能取值,使得f(x)> ﹣e1x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log2a)+f( a)≤2f(1),则a的取值范围是(
A.
B.[1,2]
C.
D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是高三某位文科生连续5次月考的历史、政治的成绩,结果统计如下:

月份

9

10

11

12

1

历史(x分)

79

81

83

85

87

政治(y分)

77

79

79

82

83


(1)求该生5次月考历史成绩的平均分和政治成绩的方差
(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关,根据上表提供的数据,求两个变量x、y的线性回归方程 = x+
(附: = = =y﹣ x)

查看答案和解析>>

同步练习册答案