精英家教网 > 高中数学 > 题目详情
8.完成下列抽样调查,较为合理的抽样方法依次是(  )
①从30件产品中抽取3件进行检查.
②某校高中三个年级共有2460人,其中高一890人、高二820人、高三810人,为了了解学生对数学的建议,拟抽取一个容量为300的样本;
③某剧场有28排,每排有32个座位,在一次报告中恰好坐满了听众,报告结束后,为了了解听众意见,需要请28名听众进行座谈.
A.①简单随机抽样,②系统抽样,③分层抽样
B.①分层抽样,②系统抽样,③简单随机抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①简单随机抽样,②分层抽样,③系统抽样

分析 ①中,总体数量不多,宜用简单随机抽样;②中,某校高中三个年级共有2460人,其中高一890人、高二820人、高三810人.宜用分层抽样;③中,总体数量较多,宜用系统抽样.

解答 解:①中,总体数量不多,适合用简单随机抽样;
②中,某校高中三个年级共有2460人,其中高一890人、高二820人、高三810人,适合于分层抽样;
③中,总体数量较多且编号有序,适合于系统抽样.
故选D.

点评 本题考查简单随机抽样、分层抽样和系统抽样的应用,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,已知A、B是两个顶点,且$AB=2\sqrt{3}$,动点M到点A的距离是4,线段MB的垂直平分线l交MA于点P.
(1)当M变化时,建立适当的坐标系,求动点P的轨迹方程.
(2)设P的轨道为曲线C,斜率为1的直线交曲线C于N、Q两点,O为坐标原点,求△NOQ面积的最大值,及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设△ABC的内角A,B,C分别对应边a,b,c.若a=3,C=60°,△ABC的面积$S=\frac{9}{2}\sqrt{3}$则边c=(  )
A.27B.$3\sqrt{7}$C.$3\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知正方体ABCD-A1B1C1D1的棱长为1,给出下列四个命题:
①对角线AC1被平面A1BD和平面B1 CD1三等分;
②正方体的内切球、与各条棱相切的球、外接球的表面积之比为1:2:3;
③以正方体的顶点为顶点的四面体的体积都是$\frac{1}{6}$;
④正方体与以A为球心,1为半径的球在该正方体内部部分的体积之比为6:π
其中正确命题的序号为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一批10件产品,其中有3件次品,7件正品,不放回抽取2次,若第一次抽到的是正品,则第二次抽到次品的概率$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A(-2,3)、B(3,2),若直线l:y=kx-2与线段AB没有交点,则l的斜率k的取值范围是$(-\frac{5}{2},\frac{4}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下列不等式:1+$\frac{1}{2}$+$\frac{1}{3}$>1,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{7}$>$\frac{3}{2}$,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{15}$>2…,则按此规律可猜想第n个不等式为1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n+1}-1}$>$\frac{n+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6名选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如图所示的茎叶图,为了增加结果的神秘感,主持人故意没有给出甲、乙两班最后一位选手的成绩,只是告诉大家,如果某位选手的成绩高于90分(不含90分),则直接“晋级”
(Ⅰ)求乙班总分超过甲班的概率
(Ⅱ)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分
①请你从平均分光和方差的角度来分析两个班的选手的情况;
②主持人从甲乙两班所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知首项为正的数列{an}中,相邻两项不为相反数,且前n项和${S_n}=\frac{1}{4}({a_n}-5)({a_n}+7)$
(1)求证:数列{an}为等差数列;
(2)设数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和为Tn,对一切正整数n都有Tn≥M成立,求M的最大值.

查看答案和解析>>

同步练习册答案