A. | $\sqrt{3}+1$ | B. | $\sqrt{3}-1$ | C. | 4 | D. | 2 |
分析 由已知利用正弦定理可求sinB,结合B的范围可求B的值,进而可求A,利用三角形面积公式即可得解.
解答 解:由正弦定理$\frac{b}{sinB}=\frac{c}{sinC}⇒sinB=\frac{bsinC}{c}=\frac{1}{2}$,
又c>b,且B∈(0,π),
所以$B=\frac{π}{6}$,
所以$A=\frac{7π}{12}$,
所以$S=\frac{1}{2}bcsinA=\frac{1}{2}×2×2\sqrt{2}sin\frac{7π}{12}=\frac{1}{2}×2×2\sqrt{2}×\frac{{\sqrt{6}+\sqrt{2}}}{4}=\sqrt{3}+1$.
故选:A.
点评 本题主要考查了正弦定理,三角形面积公式,三角形内角和定理在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | AB边中线的三等分点(非重心) | B. | AB边的中点 | ||
C. | AB边中线的中点 | D. | 重心 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 充要条件 | ||
C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com